Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Overview

Sparsity Probe: Analysis tool for Deep Learning Models

GitHub license made-with-python made-with-pytorch

This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning Models by I. Ben-Shaul and S. Dekel (2021).

Folded Ball Example

Downloading the Repo

git clone https://github.com/idobenshaul10/SparsityProbe.git
pip install -r requirements.txt

Requirements

torch==1.7.0
umap_learn==0.4.6
matplotlib==3.3.2
tqdm==4.49.0
seaborn==0.11.0
torchvision==0.8.1
numpy==1.19.2
scikit_learn==0.24.2
umap==0.1.1

Usage

The first step of using this Repo should be to look at this example: CIFAR10 Example. In this example, we demonstrate running the Sparsity-Probe on a trained Resnet18 on the CIFAR10 dataset, at selected layers.

Creating a new enviorment:

Create a new environment in the environments directory, inheriting from BaseEnviorment. This enviorment should include the train and test datasets(including the matching transforms), the model layers we want to test the alpha-scores on(see cifar10_env example), and the trained model.

Training a model:

It is possible to train a basic model with the train.py script, which uses an environment to load the model and the datasets. Example Usage: python train/train_mnist.py --output_path "results" --batch_size 32 --epochs 100

Running the Sparsity Probe

Done using the DL_smoothness.py script. Arguments:
trees - Number of trees in the forest.
depth - Maximum depth of each tree.
batch_size - batch used in the forward pass(when computing the layer outputs)
env_name - enviorment which is loaded to measure alpha-scores on
epsilon_1 - the epsilon_low used for the numerical approximation. By default, epsilon_high is inited as 4*epsilon_low
only_umap - only create umaps of the intermediate layers(without computing alpha-scores)
use_clustering - run KMeans on intermediate layers
calc_test - calculate test accuracy(More metrics coming soon)
output_folder - location where all outputs are saved
feature_dimension - to reduce computation costs, we compute the alpha-scores on the features after a dimensionality reduction technique has been applied. As of now, if the dim(layer_outputs)>feature_dimension, the TruncatedSVD is used to reduce dim(layer_outputs) to feature_dimension. Default feature_dimension is 2500.

Plotting Results

Result plots can be created using this script.

UMAP example

Acknowledgements

Our pretrained CIFAR10 Resnet18 network used in the example is taken from This Repo.

License

This repository is MIT licensed, as found in the LICENSE file.

Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach

Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach Thanh Luan Nguyen, Tri Nhu Do, Georges Kaddoum

Thanh Luan Nguyen 2 Oct 10, 2022
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022