The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

Overview

TimeSformer

This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provide PyTorch code for training and testing our proposed TimeSformer model. TimeSformer provides an efficient video classification framework that achieves state-of-the-art results on several video action recognition benchmarks such as Kinetics-400.

If you find TimeSformer useful in your research, please use the following BibTeX entry for citation.

@misc{bertasius2021spacetime,
    title   = {Is Space-Time Attention All You Need for Video Understanding?},
    author  = {Gedas Bertasius and Heng Wang and Lorenzo Torresani},
    year    = {2021},
    eprint  = {2102.05095},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}

Model Zoo

We provide TimeSformer models pretrained on Kinetics-400 (K400), Kinetics-600 (K600), Something-Something-V2 (SSv2), and HowTo100M datasets.

name dataset # of frames spatial crop [email protected] [email protected] url
TimeSformer K400 8 224 77.9 93.2 model
TimeSformer-HR K400 16 448 79.6 94.0 model
TimeSformer-L K400 96 224 80.6 94.7 model
name dataset # of frames spatial crop [email protected] [email protected] url
TimeSformer K600 8 224 79.1 94.4 model
TimeSformer-HR K600 16 448 81.8 95.8 model
TimeSformer-L K600 96 224 82.2 95.6 model
name dataset # of frames spatial crop [email protected] [email protected] url
TimeSformer SSv2 8 224 59.1 85.6 model
TimeSformer-HR SSv2 16 448 61.8 86.9 model
TimeSformer-L SSv2 64 224 62.0 87.5 model
name dataset # of frames spatial crop single clip coverage [email protected] url
TimeSformer HowTo100M 8 224 8.5s 56.8 model
TimeSformer HowTo100M 32 224 34.1s 61.2 model
TimeSformer HowTo100M 64 448 68.3s 62.2 model
TimeSformer HowTo100M 96 224 102.4s 62.6 model

We note that these models were retrained using a slightly different implementation than the one used in the paper. Therefore, there might be a small difference in performance compared to the results reported in the paper.

Installation

First, create a conda virtual environment and activate it:

conda create -n timesformer python=3.7 -y
source activate timesformer

Then, install the following packages:

  • torchvision: pip install torchvision or conda install torchvision -c pytorch
  • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
  • simplejson: pip install simplejson
  • einops: pip install einops
  • timm: pip install timm
  • PyAV: conda install av -c conda-forge
  • psutil: pip install psutil
  • OpenCV: pip install opencv-python
  • tensorboard: pip install tensorboard

Lastly, build the TimeSformer codebase by running:

git clone https://github.com/facebookresearch/TimeSformer
cd TimeSformer
python setup.py build develop

Usage

Dataset Preparation

Please use the dataset preparation instructions provided in DATASET.md.

Training the Default TimeSformer

Training the default TimeSformer that uses divided space-time attention, and operates on 8-frame clips cropped at 224x224 spatial resolution, can be done using the following command:

python tools/run_net.py \
  --cfg configs/Kinetics/TimeSformer_divST_8x32_224.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

You may need to pass location of your dataset in the command line by adding DATA.PATH_TO_DATA_DIR path_to_your_dataset, or you can simply add

DATA:
  PATH_TO_DATA_DIR: path_to_your_dataset

To the yaml configs file, then you do not need to pass it to the command line every time.

Using a Different Number of GPUs

If you want to use a smaller number of GPUs, you need to modify .yaml configuration files in configs/. Specifically, you need to modify the NUM_GPUS, TRAIN.BATCH_SIZE, TEST.BATCH_SIZE, DATA_LOADER.NUM_WORKERS entries in each configuration file. The BATCH_SIZE entry should be the same or higher as the NUM_GPUS entry. In configs/Kinetics/TimeSformer_divST_8x32_224_4gpus.yaml, we provide a sample configuration file for a 4 GPU setup.

Using Different Self-Attention Schemes

If you want to experiment with different space-time self-attention schemes, e.g., space-only or joint space-time attention, use the following commands:

python tools/run_net.py \
  --cfg configs/Kinetics/TimeSformer_spaceOnly_8x32_224.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

and

python tools/run_net.py \
  --cfg configs/Kinetics/TimeSformer_jointST_8x32_224.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

Training Different TimeSformer Variants

If you want to train more powerful TimeSformer variants, e.g., TimeSformer-HR (operating on 16-frame clips sampled at 448x448 spatial resolution), and TimeSformer-L (operating on 96-frame clips sampled at 224x224 spatial resolution), use the following commands:

python tools/run_net.py \
  --cfg configs/Kinetics/TimeSformer_divST_16x16_448.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

and

python tools/run_net.py \
  --cfg configs/Kinetics/TimeSformer_divST_96x4_224.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

Note that for these models you will need a set of GPUs with ~32GB of memory.

Inference

Use TRAIN.ENABLE and TEST.ENABLE to control whether training or testing is required for a given run. When testing, you also have to provide the path to the checkpoint model via TEST.CHECKPOINT_FILE_PATH.

python tools/run_net.py \
  --cfg configs/Kinetics/TimeSformer_divST_8x32_224_TEST.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  TEST.CHECKPOINT_FILE_PATH path_to_your_checkpoint \
  TRAIN.ENABLE False \

Single-Node Training via Slurm

To train TimeSformer via Slurm, please check out our single node Slurm training script slurm_scripts/run_single_node_job.sh.

Multi-Node Training via Submitit

Distributed training is available via Slurm and submitit

pip install submitit

To train TimeSformer model on Kinetics using 4 nodes with 8 gpus each use the following command:

python tools/submit.py --cfg configs/Kinetics/TimeSformer_divST_8x32_224.yaml --job_dir  /your/job/dir/${JOB_NAME}/ --num_shards 4 --name ${JOB_NAME} --use_volta32

We provide a script for launching slurm jobs in slurm_scripts/run_multi_node_job.sh.

Finetuning

To finetune from an existing PyTorch checkpoint add the following line in the command line, or you can also add it in the YAML config:

TRAIN.CHECKPOINT_FILE_PATH path_to_your_PyTorch_checkpoint
TRAIN.FINETUNE True

HowTo100M Dataset Split

If you want to experiment with the long-term video modeling task on HowTo100M, please download the train/test split files from here.

Environment

The code was developed using python 3.7 on Ubuntu 20.04. For training, we used four GPU compute nodes each node containing 8 Tesla V100 GPUs (32 GPUs in total). Other platforms or GPU cards have not been fully tested.

License

The majority of this work is licensed under CC-NC 4.0 International license. However portions of the project are available under separate license terms: SlowFast and pytorch-image-models are licensed under the Apache 2.0 license.

Contributing

We actively welcome your pull requests. Please see CONTRIBUTING.md and CODE_OF_CONDUCT.md for more info.

Acknowledgements

TimeSformer is built on top of PySlowFast and pytorch-image-models by Ross Wightman. We thank the authors for releasing their code. If you use our model, please consider citing these works as well:

@misc{fan2020pyslowfast,
  author =       {Haoqi Fan and Yanghao Li and Bo Xiong and Wan-Yen Lo and
                  Christoph Feichtenhofer},
  title =        {PySlowFast},
  howpublished = {\url{https://github.com/facebookresearch/slowfast}},
  year =         {2020}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
Owner
Facebook Research
Facebook Research
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 04, 2023
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers đŸ”„

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
EM-POSE 3D Human Pose Estimation from Sparse Electromagnetic Trackers.

EM-POSE: 3D Human Pose Estimation from Sparse Electromagnetic Trackers This repository contains the code to our paper published at ICCV 2021. For ques

Facebook Research 62 Dec 14, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML TĂŒbingen 70 Dec 27, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023