Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Overview

👩‍✈️ Coqpit

Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Work in progress... 🌡️

Why I need this

What I need from a ML configuration library...

  1. Fixing a general config schema in Python to guide users about expected values.

    Python is good but not universal. Sometimes you train a ML model and use it on a different platform. So, you need your model configuration file importable by other programming languages.

  2. Simple dynamic value and type checking with default values.

    If you are a beginner in a ML project, it is hard to guess the right values for your ML experiment. Therefore it is important to have some default values and know what range and type of input are expected for each field.

  3. Ability to decompose large configs.

    As you define more fields for the training dataset, data preprocessing, model parameters, etc., your config file tends to get quite large but in most cases, they can be decomposed, enabling flexibility and readability.

  4. Inheritance and nested configurations.

    Simply helps to keep configurations consistent and easier to maintain.

  5. Ability to override values from the command line when necessary.

    For instance, you might need to define a path for your dataset, and this changes for almost every run. Then the user should be able to override this value easily over the command line.

    It also allows easy hyper-parameter search without changing your original code. Basically, you can run different models with different parameters just using command line arguments.

  6. Defining dynamic or conditional config values.

    Sometimes you need to define certain values depending on the other values. Using python helps to define the underlying logic for such config values.

  7. No dependencies

    You don't want to install a ton of libraries for just configuration management. If you install one, then it is better to be just native python.

🔍 Examples

👉 Serialization

import os
from dataclasses import asdict, dataclass, field
from coqpit import Coqpit, check_argument
from typing import List, Union


@dataclass
class SimpleConfig(Coqpit):
    val_a: int = 10
    val_b: int = None
    val_c: str = "Coqpit is great!"

    def check_values(self,):
        '''Check config fields'''
        c = asdict(self)
        check_argument('val_a', c, restricted=True, min_val=10, max_val=2056)
        check_argument('val_b', c, restricted=True, min_val=128, max_val=4058, allow_none=True)
        check_argument('val_c', c, restricted=True)


@dataclass
class NestedConfig(Coqpit):
    val_d: int = 10
    val_e: int = None
    val_f: str = "Coqpit is great!"
    sc_list: List[SimpleConfig] = None
    sc: SimpleConfig = SimpleConfig()
    union_var: Union[List[SimpleConfig], SimpleConfig] = field(default_factory=lambda: [SimpleConfig(),SimpleConfig()])

    def check_values(self,):
        '''Check config fields'''
        c = asdict(self)
        check_argument('val_d', c, restricted=True, min_val=10, max_val=2056)
        check_argument('val_e', c, restricted=True, min_val=128, max_val=4058, allow_none=True)
        check_argument('val_f', c, restricted=True)
        check_argument('sc_list', c, restricted=True, allow_none=True)
        check_argument('sc', c, restricted=True, allow_none=True)


if __name__ == '__main__':
    file_path = os.path.dirname(os.path.abspath(__file__))
    # init 🐸 dataclass
    config = NestedConfig()

    # save to a json file
    config.save_json(os.path.join(file_path, 'example_config.json'))
    # load a json file
    config2 = NestedConfig(val_d=None, val_e=500, val_f=None, sc_list=None, sc=None, union_var=None)
    # update the config with the json file.
    config2.load_json(os.path.join(file_path, 'example_config.json'))
    # now they should be having the same values.
    assert config == config2

    # pretty print the dataclass
    print(config.pprint())

    # export values to a dict
    config_dict = config.to_dict()
    # crate a new config with different values than the defaults
    config2 = NestedConfig(val_d=None, val_e=500, val_f=None, sc_list=None, sc=None, union_var=None)
    # update the config with the exported valuess from the previous config.
    config2.from_dict(config_dict)
    # now they should be having the same values.
    assert config == config2

👉 argparse handling and parsing.

import argparse
import os
from dataclasses import asdict, dataclass, field
from typing import List

from coqpit.coqpit import Coqpit, check_argument
import sys


@dataclass
class SimplerConfig(Coqpit):
    val_a: int = field(default=None, metadata={'help': 'this is val_a'})


@dataclass
class SimpleConfig(Coqpit):
    val_a: int = field(default=10,
                       metadata={'help': 'this is val_a of SimpleConfig'})
    val_b: int = field(default=None, metadata={'help': 'this is val_b'})
    val_c: str = "Coqpit is great!"
    mylist_with_default: List[SimplerConfig] = field(
        default_factory=lambda:
        [SimplerConfig(val_a=100),
         SimplerConfig(val_a=999)],
        metadata={'help': 'list of SimplerConfig'})

    # mylist_without_default: List[SimplerConfig] = field(default=None, metadata={'help': 'list of SimplerConfig'})  # NOT SUPPORTED YET!

    def check_values(self, ):
        '''Check config fields'''
        c = asdict(self)
        check_argument('val_a', c, restricted=True, min_val=10, max_val=2056)
        check_argument('val_b',
                       c,
                       restricted=True,
                       min_val=128,
                       max_val=4058,
                       allow_none=True)
        check_argument('val_c', c, restricted=True)


def main():
    file_path = os.path.dirname(os.path.abspath(__file__))

    # initial config
    config = SimpleConfig()
    print(config.pprint())

    # reference config that we like to match with the config above
    config_ref = SimpleConfig(val_a=222,
                              val_b=999,
                              val_c='this is different',
                              mylist_with_default=[
                                  SimplerConfig(val_a=222),
                                  SimplerConfig(val_a=111)
                              ])

    # create and init argparser with Coqpit
    parser = argparse.ArgumentParser()
    parser = config.init_argparse(parser)
    parser.print_help()
    args = parser.parse_args()

    # parse the argsparser
    config.from_argparse(args)
    config.pprint()
    # check the current config with the reference config
    assert config == config_ref


if __name__ == '__main__':
    sys.argv.extend(['--coqpit.val_a', '222'])
    sys.argv.extend(['--coqpit.val_b', '999'])
    sys.argv.extend(['--coqpit.val_c', 'this is different'])
    sys.argv.extend(['--coqpit.mylist_with_default.0.val_a', '222'])
    sys.argv.extend(['--coqpit.mylist_with_default.1.val_a', '111'])
    main()

🤸‍♀️ Merging coqpits

import os
from dataclasses import dataclass
from coqpit.coqpit import Coqpit, check_argument


@dataclass
class CoqpitA(Coqpit):
    val_a: int = 10
    val_b: int = None
    val_d: float = 10.21
    val_c: str = "Coqpit is great!"


@dataclass
class CoqpitB(Coqpit):
    val_d: int = 25
    val_e: int = 257
    val_f: float = -10.21
    val_g: str = "Coqpit is really great!"


if __name__ == '__main__':
    file_path = os.path.dirname(os.path.abspath(__file__))
    coqpita = CoqpitA()
    coqpitb = CoqpitB()
    coqpitb.merge(coqpita)
    print(coqpitb.val_a)
    print(coqpitb.pprint())
Comments
  • Allow file-like objects when saving and loading

    Allow file-like objects when saving and loading

    Allow users to save the configs to arbitrary locations through file-like objects. Would e.g. simplify coqui-ai/TTS#683 without adding an fsspec dependency to this library.

    opened by agrinh 6
  • Latest PR causes an issue when a `Serializable` has default None

    Latest PR causes an issue when a `Serializable` has default None

    https://github.com/coqui-ai/coqpit/blob/5379c810900d61ae19d79b73b03890fa103487dd/coqpit/coqpit.py#L539

    @reuben I am on it but if you have an easy fix go for it. Right now it breaks all the TTS trainings.

    opened by erogol 2
  • [feature request] change the `arg_perfix` of coqpit

    [feature request] change the `arg_perfix` of coqpit

    Is it possible to change the arg_perfix when using Coqpit object to another value / empty string? I see the option is supported in the code by changing arg_perfix, but not sure how to access it using the proposed API.

    Thanks for the package, looks very useful!

    opened by mosheman5 1
  • Setup CI to push new tags to PyPI automatically

    Setup CI to push new tags to PyPI automatically

    I'm gonna add a workflow to automatically upload new tags to PyPI. @erogol when you have a chance could you transfer the coqpit project on PyPI to the coqui user?[0] Then you can add your personal account as a maintainer also, so you don't have to change your local setup.

    In the mean time I'll iterate on testpypi.

    [0] https://pypi.org/user/coqui/

    opened by reuben 1
  • Fix rsetattr

    Fix rsetattr

    rsetattr() is updated to pass the new test cases below.

    I don't know if it is the right solution. It might be that rsetattr confuses when coqpit is used as a prefix.

    opened by erogol 0
  • [feature request] Warning when unexpected key is loaded but not present in class

    [feature request] Warning when unexpected key is loaded but not present in class

    Here is an toy scenario where it would be nice to have a warning

    from dataclasses import dataclass
    from coqpit import Coqpit
    
    @dataclass
    class SimpleConfig(Coqpit):
        val_a: int = 10
        val_b: int = None
    
    if __name__ == "__main__":
        config = SimpleConfig()
    
        tmp_config = config.to_dict()
        tmp_config["unknown_key"] = "Ignored value"
        config.from_dict(tmp_config)
        print(config.to_json())
    

    There the value of config.to_json() is

    {
        "val_a": 10,
        "val_b": null
    }
    

    Which is expected behaviour, but we should get a warning that some keys were ignored (IMO)

    feature request 
    opened by WeberJulian 6
  • [feature request] Add `is_defined`

    [feature request] Add `is_defined`

    Use coqpit.is_defined('field') to check if "field" in coqpit and coqpit.field is not None:

    It is a common condition when you parse out a coqpit object.

    feature request 
    opened by erogol 0
  • Allow grouping of argparse fields according to subclassing

    Allow grouping of argparse fields according to subclassing

    When using inheritance to extend config definitions the resulting ArgumentParser has all fields flattened out. It would be nice to group fields by class and allow some control over ordering.

    opened by reuben 2
Releases(v0.0.17)
Owner
Eren Gölge
AI researcher @Coqui.ai
Eren Gölge
Hierarchical Time Series Forecasting using Prophet

htsprophet Hierarchical Time Series Forecasting using Prophet Credit to Rob J. Hyndman and research partners as much of the code was developed with th

Collin Rooney 131 Dec 02, 2022
Real-time stream processing for python

Streamz Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelin

Python Streamz 1.1k Dec 28, 2022
Predict the demand for electricity (R) - FRENCH

06.demand-electricity Predict the demand for electricity (R) - FRENCH Prédisez la demande en électricité Prérequis Pour effectuer ce projet, vous devr

1 Feb 13, 2022
Repository for DCA0305, an undergraduate course about Machine Learning Workflows and Pipelines

Federal University of Rio Grande do Norte Technology Center Department of Computer Engineering and Automation Machine Learning Based Systems Design Re

Ivanovitch Silva 81 Oct 18, 2022
hgboost - Hyperoptimized Gradient Boosting

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results o

Erdogan Taskesen 34 Jan 03, 2023
Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining

**Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining.** S

Sebastian Raschka 4k Dec 30, 2022
Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

2.3k Jan 04, 2023
TorchDrug is a PyTorch-based machine learning toolbox designed for drug discovery

A powerful and flexible machine learning platform for drug discovery

MilaGraph 1.1k Jan 08, 2023
Bayesian Additive Regression Trees For Python

BartPy Introduction BartPy is a pure python implementation of the Bayesian additive regressions trees model of Chipman et al [1]. Reasons to use BART

187 Dec 16, 2022
STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks

STUMPY STUMPY is a powerful and scalable library that efficiently computes something called the matrix profile, which can be used for a variety of tim

TD Ameritrade 2.5k Jan 06, 2023
A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Demand-Forecasting Business Problem A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Ayşe Nur Türkaslan 3 Mar 06, 2022
Python/Sage Tool for deriving Scattering Matrices for WDF R-Adaptors

R-Solver A Python tools for deriving R-Type adaptors for Wave Digital Filters. This code is not quite production-ready. If you are interested in contr

8 Sep 19, 2022
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021
Traingenerator 🧙 A web app to generate template code for machine learning ✨

Traingenerator 🧙 A web app to generate template code for machine learning ✨ 🎉 Traingenerator is now live! 🎉

Johannes Rieke 1.2k Jan 07, 2023
A model to predict steering torque fully end-to-end

torque_model The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering f

Shane Smiskol 4 Jun 03, 2022
scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms.

Sklearn-genetic-opt scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms. This is meant to be an alternativ

Rodrigo Arenas 180 Dec 20, 2022
Forecasting prices using Facebook/Meta's Prophet model

CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da

1 Nov 27, 2021
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
A Python package to preprocess time series

Disclaimer: This package is WIP. Do not take any APIs for granted. tspreprocess Time series can contain noise, may be sampled under a non fitting rate

Maximilian Christ 57 Dec 17, 2022
End to End toy example of MLOps

churn_model MLOps Toy Example End to End You might find below links useful Connect VSCode to Git MLFlow Port Heroku App Project Organization ├── LICEN

Ashish Tele 6 Feb 06, 2022