This repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

Overview

uber-pickups-analysis

Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city

Information about data set

The dataset contains, roughly, TWO groups of files: ● Uber trip data from 2014 (April - September), separated by month, with detailed location information. ● Uber trip data from 2015 (January - June), with less fine-grained location information.

Uber trip data from 2014 There are six files of raw data on Uber pickups in New York City from April to September 2014. The files are separated by month and each has the following columns: ● Date/Time : The date and time of the Uber pickup ● Lat : The latitude of the Uber pickup ● Lon : The longitude of the Uber pickup ● Base : The TLC base company code affiliated with the Uber pickup. These files are named:

● uber-raw-data-apr14.csv ● uber-raw-data-aug14.csv ● uber-raw-data-jul14.csv ● uber-raw-data-jun14.csv ● uber-raw-data-may14.csv ● uber-raw-data-sep14.csv

Uber trip data from 2015

Also included is the file uber-raw-data-janjune-15.csv This file has the following columns: ● Dispatching_base_num : The TLC base company code of the base that dispatched the Uber. ● Pickup_date : The date and time of the Uber pickup ● Affiliated_base_num : The TLC base company code affiliated with the Uber pickup. ● locationID : The pickup location ID affiliated with the Uber pickup These files are named:

  • uber-raw-data-janjune-15.csv

motive of Project

To analyze the data of the customer rides and visualize the data to find insights that can help improve business. Data analysis and visualization is an important part of data science. They are used to gather insights from the data and with visualization you can get quick information from the data.

How to Run the Project

In order to run the project just download the data from above mentioned source then run any file.

Prerequisites

You need to have installed following softwares and libraries in your machine before running this project.

Python 3 Anaconda: It will install ipython notebook and most of the libraries which are needed like sklearn, pandas, seaborn, matplotlib, numpy, scipy.

Installing

Python 3: https://www.python.org/downloads/ Anaconda: https://www.anaconda.com/download/

Authors

DEVA DEEKSHITH and kilari jaswanth(https://github.com/Kilarijaswanth)- combined work

Owner
B DEVA DEEKSHITH
B DEVA DEEKSHITH
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

1 Jan 01, 2022
Time Series Prediction with tf.contrib.timeseries

TensorFlow-Time-Series-Examples Additional examples for TensorFlow Time Series(TFTS). Read a Time Series with TFTS From a Numpy Array: See "test_input

Zhiyuan He 476 Nov 17, 2022
TorchDrug is a PyTorch-based machine learning toolbox designed for drug discovery

A powerful and flexible machine learning platform for drug discovery

MilaGraph 1.1k Jan 08, 2023
MLflow App Using React, Hooks, RabbitMQ, FastAPI Server, Celery, Microservices

Katana ML Skipper This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable

Tom Xu 8 Nov 17, 2022
🎛 Distributed machine learning made simple.

🎛 lazycluster Distributed machine learning made simple. Use your preferred distributed ML framework like a lazy engineer. Getting Started • Highlight

Machine Learning Tooling 44 Nov 27, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Predict the output which should give a fair idea about the chances of admission for a student for a particular university

Predict the output which should give a fair idea about the chances of admission for a student for a particular university.

ArvindSandhu 1 Jan 11, 2022
The Simpsons and Machine Learning: What makes an Episode Great?

The Simpsons and Machine Learning: What makes an Episode Great? Check out my Medium article on this! PROBLEM: The Simpsons has had a decline in qualit

1 Nov 02, 2021
Provide an input CSV and a target field to predict, generate a model + code to run it.

automl-gs Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learn

Max Woolf 1.8k Jan 04, 2023
Python module for data science and machine learning users.

dsnk-distributions package dsnk distribution is a Python module for data science and machine learning that was created with the goal of reducing calcu

Emmanuel ASIFIWE 1 Nov 23, 2021
Automated Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning

The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. I

MLJAR 2.4k Jan 02, 2023
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Microsoft 8.4k Dec 30, 2022
A simple python program which predicts the success of a movie based on it's type, actor, actress and director

Movie-Success-Prediction A simple python program which predicts the success of a movie based on it's type, actor, actress and director. The program us

Mahalinga Prasad R N 1 Dec 17, 2021
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.

Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp

AutoViz and Auto_ViML 519 Jan 03, 2023
Customers Segmentation with RFM Scores and K-means

Customer Segmentation with RFM Scores and K-means RFM Segmentation table: K-Means Clustering: Business Problem Rule-based customer segmentation machin

5 Aug 10, 2022
Practical Time-Series Analysis, published by Packt

Practical Time-Series Analysis This is the code repository for Practical Time-Series Analysis, published by Packt. It contains all the supporting proj

Packt 325 Dec 23, 2022
Coursera Machine Learning - Python code

Coursera Machine Learning This repository contains python implementations of certain exercises from the course by Andrew Ng. For a number of assignmen

Jordi Warmenhoven 859 Dec 10, 2022
A Collection of Conference & School Notes in Machine Learning 🦄📝🎉

Machine Learning Conference & Summer School Notes. 🦄📝🎉

558 Dec 28, 2022
Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas.

Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas. Its objective is to ex

Taylor G Smith 54 Aug 20, 2022
MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training

MosaicML Composer MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training. We aim to ease th

MosaicML 2.8k Jan 06, 2023