WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging.

Overview

WAGMA-SGD

WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging. The key idea of WAGMA-SGD is to use a novel wait-avoiding group allreduce to average the models among processes. The synchronization is relaxed by making the collectives externally-triggerable, namely, a collective can be initiated without requiring that all the processes enter it. Thus, it can better handle the deep learning training with load imbalance. Since WAGMA-SGD only reduces the data within non-overlapping groups of process, it significantly improves the parallel scalability. WAGMA-SGD may bring staleness to the weights. However, the staleness is bounded. WAGMA-SGD is based on model averaging, rather than gradient averaging. Therefore, after the periodic synchronization is conducted, it guarantees a consistent model view amoung processes.

Demo

The wait-avoiding group allreduce operation is implemented in ./WAGMA-SGD-modules/fflib3/. To use it, simply configure and compile fflib3 as to an .so library by conducting cmake .. and make in the directory ./WAGMA-SGD-modules/fflib3/lib/. A script to run WAGMA-SGD on ResNet-50/ImageNet with SLURM job scheduler can be found here. Generally, to evaluate other neural network models with the customized optimizers (e.g., wait-avoiding group allreduce), one can simply wrap the default optimizer using the customized optimizers. See the example for ResNet-50 here.

For the deep learning tasks implemented in TensorFlow, we implemented custom C++ operators, in which we may call the wait-avoiding group allreduce operation or other communication operations (according to the specific parallel SGD algorithm) to average the models. Next, we register the C++ operators to TensorFlow, which can then be used to build the TensorFlow computational graph to implement the SGD algorithms. Similarly, for the deep learning tasks implemented in PyTorch, one can utilize pybind11 to call C++ operators in Python.

Publication

The work of WAGMA-SGD is pulished in TPDS'21. See the paper for details. To cite our work:

@ARTICLE{9271898,
  author={Li, Shigang and Ben-Nun, Tal and Nadiradze, Giorgi and Girolamo, Salvatore Di and Dryden, Nikoli and Alistarh, Dan and Hoefler, Torsten},
  journal={IEEE Transactions on Parallel and Distributed Systems},
  title={Breaking (Global) Barriers in Parallel Stochastic Optimization With Wait-Avoiding Group Averaging},
  year={2021},
  volume={32},
  number={7},
  pages={1725-1739},
  doi={10.1109/TPDS.2020.3040606}}

License

See LICENSE.

Owner
Shigang Li
Shigang Li
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022
Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

24 Oct 27, 2022
dirty_cat is a Python module for machine-learning on dirty categorical variables.

dirty_cat dirty_cat is a Python module for machine-learning on dirty categorical variables.

637 Dec 29, 2022
Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale.

Model Search Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers sp

AriesTriputranto 1 Dec 13, 2021
YouTube Spam Detection with python

YouTube Spam Detection This code deletes spam comment on youtube videos based on two characteristics (currently) If the author of the comment has a se

MohamadReza Taalebi 5 Sep 27, 2022
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.

SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S

Amazon Web Services 1.8k Jan 01, 2023
Apache (Py)Spark type annotations (stub files).

PySpark Stubs A collection of the Apache Spark stub files. These files were generated by stubgen and manually edited to include accurate type hints. T

Maciej 114 Nov 22, 2022
Tribuo - A Java machine learning library

Tribuo - A Java prediction library (v4.1) Tribuo is a machine learning library in Java that provides multi-class classification, regression, clusterin

Oracle 1.1k Dec 28, 2022
Machine Learning Techniques using python.

👋 Hi, I’m Fahad from TEXAS TECH. 👀 I’m interested in Optimization / Machine Learning/ Statistics 🌱 I’m currently learning Machine Learning and Stat

FAHAD MOSTAFA 1 Jan 19, 2022
Polyglot Machine Learning example for scraping similar news articles.

Polyglot Machine Learning example for scraping similar news articles In this example, we will see how we can work with Machine Learning applications w

MetaCall 15 Mar 28, 2022
Open-Source CI/CD platform for ML teams. Deliver ML products, better & faster. ⚡️🧑‍🔧

Deliver ML products, better & faster Giskard is an Open-Source CI/CD platform for ML teams. Inspect ML models visually from your Python notebook 📗 Re

Giskard 335 Jan 04, 2023
Graphsignal is a machine learning model monitoring platform.

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model

Graphsignal 143 Dec 05, 2022
Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

Payment-Date-Prediction Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

15 Sep 09, 2022
使用数学和计算机知识投机倒把

偷鸡不成项目集锦 坦率地讲,涉及金融市场的好策略如果公开,必然导致使用的人多,最后策略变差。所以这个仓库只收集我目前失败了的案例。 加密货币组合套利 中国体育彩票预测 我赚不上钱的项目,也许可以帮助更有能力的人去赚钱。

Roy 28 Dec 29, 2022
Penguins species predictor app is used to classify penguins species created using python's scikit-learn, fastapi, numpy and joblib packages.

Penguins Classification App Penguins species predictor app is used to classify penguins species using their island, sex, bill length (mm), bill depth

Siva Prakash 3 Apr 05, 2022
Software Engineer Salary Prediction

Based on 2021 stack overflow data, this machine learning web application helps one predict the salary based on years of experience, level of education and the country they work in.

Jhanvi Mimani 1 Jan 08, 2022
Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas.

Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas. Its objective is to ex

Taylor G Smith 54 Aug 20, 2022
Test symmetries with sklearn decision tree models

Test symmetries with sklearn decision tree models Setup Begin from an environment with a recent version of python 3. source setup.sh Leave the enviro

Rupert Tombs 2 Jul 19, 2022
Cool Python features for machine learning that I used to be too afraid to use. Will be updated as I have more time / learn more.

python-is-cool A gentle guide to the Python features that I didn't know existed or was too afraid to use. This will be updated as I learn more and bec

Chip Huyen 3.3k Jan 05, 2023
Simple Machine Learning Tool Kit

Getting started smltk (Simple Machine Learning Tool Kit) package is implemented for helping your work during data preparation testing your model The g

Alessandra Bilardi 1 Dec 30, 2021