WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging.

Overview

WAGMA-SGD

WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging. The key idea of WAGMA-SGD is to use a novel wait-avoiding group allreduce to average the models among processes. The synchronization is relaxed by making the collectives externally-triggerable, namely, a collective can be initiated without requiring that all the processes enter it. Thus, it can better handle the deep learning training with load imbalance. Since WAGMA-SGD only reduces the data within non-overlapping groups of process, it significantly improves the parallel scalability. WAGMA-SGD may bring staleness to the weights. However, the staleness is bounded. WAGMA-SGD is based on model averaging, rather than gradient averaging. Therefore, after the periodic synchronization is conducted, it guarantees a consistent model view amoung processes.

Demo

The wait-avoiding group allreduce operation is implemented in ./WAGMA-SGD-modules/fflib3/. To use it, simply configure and compile fflib3 as to an .so library by conducting cmake .. and make in the directory ./WAGMA-SGD-modules/fflib3/lib/. A script to run WAGMA-SGD on ResNet-50/ImageNet with SLURM job scheduler can be found here. Generally, to evaluate other neural network models with the customized optimizers (e.g., wait-avoiding group allreduce), one can simply wrap the default optimizer using the customized optimizers. See the example for ResNet-50 here.

For the deep learning tasks implemented in TensorFlow, we implemented custom C++ operators, in which we may call the wait-avoiding group allreduce operation or other communication operations (according to the specific parallel SGD algorithm) to average the models. Next, we register the C++ operators to TensorFlow, which can then be used to build the TensorFlow computational graph to implement the SGD algorithms. Similarly, for the deep learning tasks implemented in PyTorch, one can utilize pybind11 to call C++ operators in Python.

Publication

The work of WAGMA-SGD is pulished in TPDS'21. See the paper for details. To cite our work:

@ARTICLE{9271898,
  author={Li, Shigang and Ben-Nun, Tal and Nadiradze, Giorgi and Girolamo, Salvatore Di and Dryden, Nikoli and Alistarh, Dan and Hoefler, Torsten},
  journal={IEEE Transactions on Parallel and Distributed Systems},
  title={Breaking (Global) Barriers in Parallel Stochastic Optimization With Wait-Avoiding Group Averaging},
  year={2021},
  volume={32},
  number={7},
  pages={1725-1739},
  doi={10.1109/TPDS.2020.3040606}}

License

See LICENSE.

Owner
Shigang Li
Shigang Li
Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application

Intel(R) Extension for Scikit-learn* Installation | Documentation | Examples | Support | FAQ With Intel(R) Extension for Scikit-learn you can accelera

Intel Corporation 858 Dec 25, 2022
A high-performance topological machine learning toolbox in Python

giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G

giotto.ai 632 Dec 29, 2022
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
A machine learning web application for binary classification using streamlit

Machine Learning web App This is a machine learning web application for binary classification using streamlit options this application contains 3 clas

abdelhak mokri 1 Dec 20, 2021
distfit - Probability density fitting

Python package for probability density function fitting of univariate distributions of non-censored data

Erdogan Taskesen 187 Dec 30, 2022
OptaPy is an AI constraint solver for Python to optimize planning and scheduling problems.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 208 Dec 27, 2022
Coursera Machine Learning - Python code

Coursera Machine Learning This repository contains python implementations of certain exercises from the course by Andrew Ng. For a number of assignmen

Jordi Warmenhoven 859 Dec 10, 2022
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
CVXPY is a Python-embedded modeling language for convex optimization problems.

CVXPY The CVXPY documentation is at cvxpy.org. We are building a CVXPY community on Discord. Join the conversation! For issues and long-form discussio

4.3k Jan 08, 2023
A model to predict steering torque fully end-to-end

torque_model The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering f

Shane Smiskol 4 Jun 03, 2022
AutoOED: Automated Optimal Experiment Design Platform

AutoOED is an optimal experiment design platform powered with automated machine learning to accelerate the discovery of optimal solutions. Our platform solves multi-objective optimization problems an

Yunsheng Tian 107 Jan 03, 2023
Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

DIAL | Notre Dame 220 Dec 13, 2022
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

Jesùs Guillen 1 Jun 03, 2022
Project to deploy a machine learning model based on Titanic dataset from Kaggle

kaggle_titanic_deploy Project to deploy a machine learning model based on Titanic dataset from Kaggle In this project we used the Titanic dataset from

Vivian Yamassaki 8 May 23, 2022
ETNA is an easy-to-use time series forecasting framework.

ETNA is an easy-to-use time series forecasting framework. It includes built in toolkits for time series preprocessing, feature generation, a variety of predictive models with unified interface - from

Tinkoff.AI 674 Jan 07, 2023
Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas.

Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas. Its objective is to ex

Taylor G Smith 54 Aug 20, 2022
A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and algorithms to mitigate bias in datasets and models.

AI Fairness 360 (AIF360) The AI Fairness 360 toolkit is an extensible open-source library containg techniques developed by the research community to h

1.9k Jan 06, 2023
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters

Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing

Peter Wittek 239 Nov 10, 2022
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021