Implementation of deep learning models for time series in PyTorch.

Overview

List of Implementations:

Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks https://arxiv.org/abs/1704.04110) is available in PyTorch. More papers will be coming soon.

Authors:

  • Yunkai Zhang([email protected]) - University of California, Santa Barbara

  • Qiao Jiang - Brown University

  • Xueying Ma - Columbia University

  • Acknowledgement: Professor Xifeng Yan's group at UC Santa Barbara. Part of the work was done at WeWork.

To run:

  1. Install all dependencies listed in requirements.txt. Note that the model has only been tested in the versions shown in the text file.

  2. Download the dataset and preprocess the data:

    python preprocess_elect.py
  3. Start training:

    python train.py
    • If you want to perform ancestral sampling,

      python train.py --sampling
    • If you do not want to do normalization during evaluation,

      python train.py --relative-metrics
  4. Evaluate a set of saved model weights:

    python evaluate.py
  5. Perform hyperparameter search:

     python search_params.py

Results

​ The model is evaluated on the electricity dataset, which contains the electricity consumption of 370 households from 2011 to 2014. Under hourly frequency, we use the first week of September, 2014 as the test set and all time steps prior to that as the train set. Following the experiment design in DeepAR, the window size is chosen to be 192, where the last 24 is the forecasting horizon. History (number of time steps since the beginning of each household), month of the year, day of the week, and hour of the day are used as time covariates. Notice that some households started at different times, so we only use windows that contain non-missing values.

​ Under Gaussian likelihood, we use the Adam optimizer with early stopping to train the model for 20 epoches. The same set of hyperparameters is used as outlined in the paper. Weights with the best ND value is selected, where ND = 0.06349, RMSE = 0.452, rou90 = 0.034 and rou50 = 0.063.

​ Sample results on electricity. The top 10 plots are sampled from the test set with the highest 10% ND values, whereas the bottom 10 plots are sampled from the rest of the test set.

Sample results on electricity. The top 10 plots are sampled from the test set with the highest 10% ND values, whereas the bottom 10 plots are sampled from the rest of the test set.

Owner
Yunkai Zhang
IEOR PhD @ UC Berkeley, math/computing @ UCSB CCS
Yunkai Zhang
GAM timeseries modeling with auto-changepoint detection. Inspired by Facebook Prophet and implemented in PyMC3

pm-prophet Pymc3-based universal time series prediction and decomposition library (inspired by Facebook Prophet). However, while Faceook prophet is a

Luca Giacomel 314 Dec 25, 2022
Module for statistical learning, with a particular emphasis on time-dependent modelling

Operating system Build Status Linux/Mac Windows tick tick is a Python 3 module for statistical learning, with a particular emphasis on time-dependent

X - Data Science Initiative 410 Dec 14, 2022
Forecasting prices using Facebook/Meta's Prophet model

CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da

1 Nov 27, 2021
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 08, 2023
Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning My

3 Apr 10, 2022
ETNA – time series forecasting framework

ETNA Time Series Library Predict your time series the easiest way Homepage | Documentation | Tutorials | Contribution Guide | Release Notes ETNA is an

Tinkoff.AI 675 Jan 08, 2023
🤖 ⚡ scikit-learn tips

🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all

Kevin Markham 1.6k Jan 03, 2023
Microsoft 5.6k Jan 07, 2023
Responsible AI Workshop: a series of tutorials & walkthroughs to illustrate how put responsible AI into practice

Responsible AI Workshop Responsible innovation is top of mind. As such, the tech industry as well as a growing number of organizations of all kinds in

Microsoft 9 Sep 14, 2022
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
Decision Tree Regression algorithm implemented on Python from scratch.

Decision_Tree_Regression I implemented the decision tree regression algorithm on Python. Unlike regular linear regression, this algorithm is used when

1 Dec 22, 2021
Deploy AutoML as a service using Flask

AutoML Service Deploy automated machine learning (AutoML) as a service using Flask, for both pipeline training and pipeline serving. The framework imp

Chris Rawles 221 Nov 04, 2022
A simple machine learning python sign language detection project.

SST Coursework 2022 About the app A python application that utilises the tensorflow object detection algorithm to achieve automatic detection of ameri

Xavier Koh 2 Jun 30, 2022
Code for the TCAV ML interpretability project

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) Been Kim, Martin Wattenberg, Justin Gilmer, C

552 Dec 27, 2022
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
Coursera Machine Learning - Python code

Coursera Machine Learning This repository contains python implementations of certain exercises from the course by Andrew Ng. For a number of assignmen

Jordi Warmenhoven 859 Dec 10, 2022
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code

Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co

Hugging Face 2.5k Jan 07, 2023
PySurvival is an open source python package for Survival Analysis modeling

PySurvival What is Pysurvival ? PySurvival is an open source python package for Survival Analysis modeling - the modeling concept used to analyze or p

Square 265 Dec 27, 2022
An AutoML survey focusing on practical systems.

This project is a community effort in constructing and maintaining an up-to-date beginner-friendly introduction to AutoML, focusing on practical systems. AutoML is a big field, and continues to grow

AutoGOAL 16 Aug 14, 2022