Implementation of deep learning models for time series in PyTorch.

Overview

List of Implementations:

Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks https://arxiv.org/abs/1704.04110) is available in PyTorch. More papers will be coming soon.

Authors:

  • Yunkai Zhang([email protected]) - University of California, Santa Barbara

  • Qiao Jiang - Brown University

  • Xueying Ma - Columbia University

  • Acknowledgement: Professor Xifeng Yan's group at UC Santa Barbara. Part of the work was done at WeWork.

To run:

  1. Install all dependencies listed in requirements.txt. Note that the model has only been tested in the versions shown in the text file.

  2. Download the dataset and preprocess the data:

    python preprocess_elect.py
  3. Start training:

    python train.py
    • If you want to perform ancestral sampling,

      python train.py --sampling
    • If you do not want to do normalization during evaluation,

      python train.py --relative-metrics
  4. Evaluate a set of saved model weights:

    python evaluate.py
  5. Perform hyperparameter search:

     python search_params.py

Results

​ The model is evaluated on the electricity dataset, which contains the electricity consumption of 370 households from 2011 to 2014. Under hourly frequency, we use the first week of September, 2014 as the test set and all time steps prior to that as the train set. Following the experiment design in DeepAR, the window size is chosen to be 192, where the last 24 is the forecasting horizon. History (number of time steps since the beginning of each household), month of the year, day of the week, and hour of the day are used as time covariates. Notice that some households started at different times, so we only use windows that contain non-missing values.

​ Under Gaussian likelihood, we use the Adam optimizer with early stopping to train the model for 20 epoches. The same set of hyperparameters is used as outlined in the paper. Weights with the best ND value is selected, where ND = 0.06349, RMSE = 0.452, rou90 = 0.034 and rou50 = 0.063.

​ Sample results on electricity. The top 10 plots are sampled from the test set with the highest 10% ND values, whereas the bottom 10 plots are sampled from the rest of the test set.

Sample results on electricity. The top 10 plots are sampled from the test set with the highest 10% ND values, whereas the bottom 10 plots are sampled from the rest of the test set.

Owner
Yunkai Zhang
IEOR PhD @ UC Berkeley, math/computing @ UCSB CCS
Yunkai Zhang
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.

Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi

BentoML 4.4k Jan 04, 2023
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters

Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing

Peter Wittek 239 Nov 10, 2022
Python Automated Machine Learning library for tabular data.

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie

Daniel Khromov 47 Dec 17, 2022
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
SIMD-accelerated bitwise hamming distance Python module for hexidecimal strings

hexhamming What does it do? This module performs a fast bitwise hamming distance of two hexadecimal strings. This looks like: DEADBEEF = 1101111010101

Michael Recachinas 12 Oct 14, 2022
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

The Learning Machines 1 Jan 16, 2022
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch

LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is imp

432 Jan 05, 2023
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
The unified machine learning framework, enabling framework-agnostic functions, layers and libraries.

The unified machine learning framework, enabling framework-agnostic functions, layers and libraries. Contents Overview In a Nutshell Where Next? Overv

Ivy 8.2k Dec 31, 2022
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
Basic Docker Compose for Machine Learning Purposes

Docker-compose for Machine Learning How to use: cd docker-ml-jupyterlab

Chris Chen 1 Oct 29, 2021
Decision Weights in Prospect Theory

Decision Weights in Prospect Theory It's clear that humans are irrational, but how irrational are they? After some research into behavourial economics

Cameron Davidson-Pilon 32 Nov 08, 2021
Distributed deep learning on Hadoop and Spark clusters.

Note: we're lovingly marking this project as Archived since we're no longer supporting it. You are welcome to read the code and fork your own version

Yahoo 1.3k Dec 28, 2022
Visualize classified time series data with interactive Sankey plots in Google Earth Engine

sankee Visualize changes in classified time series data with interactive Sankey plots in Google Earth Engine Contents Description Installation Using P

Aaron Zuspan 76 Dec 15, 2022
Examples and code for the Practical Machine Learning workshop series

Practical Machine Learning Workshop Series Practical Machine Learning for Quantitative Finance Post conference workshop at the WBS Spring Conference D

CompatibL 21 Jun 25, 2022
BigDL: Distributed Deep Learning Framework for Apache Spark

BigDL: Distributed Deep Learning on Apache Spark What is BigDL? BigDL is a distributed deep learning library for Apache Spark; with BigDL, users can w

4.1k Jan 09, 2023
GAM timeseries modeling with auto-changepoint detection. Inspired by Facebook Prophet and implemented in PyMC3

pm-prophet Pymc3-based universal time series prediction and decomposition library (inspired by Facebook Prophet). However, while Faceook prophet is a

Luca Giacomel 314 Dec 25, 2022
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
Factorization machines in python

Factorization Machines in Python This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive re

Corey Lynch 892 Jan 03, 2023