Lightweight Machine Learning Experiment Logging 📖

Overview

A Lightweight Logger for ML Experiments 📖

Pyversions PyPI version Code style: black Colab

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and combination of multi-configuration runs. For a quickstart checkout the notebook blog 🚀

The API 🎮

from mle_logging import MLELogger

# Instantiate logging to experiment_dir
log = MLELogger(time_to_track=['num_updates', 'num_epochs'],
                what_to_track=['train_loss', 'test_loss'],
                experiment_dir="experiment_dir/",
                model_type='torch')

time_tic = {'num_updates': 10, 'num_epochs': 1}
stats_tic = {'train_loss': 0.1234, 'test_loss': 0.1235}

# Update the log with collected data & save it to .hdf5
log.update(time_tic, stats_tic)
log.save()

You can also log model checkpoints, matplotlib figures and other .pkl compatible objects.

# Save a model (torch, tensorflow, sklearn, jax, numpy)
import torchvision.models as models
model = models.resnet18()
log.save_model(model)

# Save a matplotlib figure as .png
fig, ax = plt.subplots()
log.save_plot(fig)

# You can also save (somewhat) arbitrary objects .pkl
some_dict = {"hi" : "there"}
log.save_extra(some_dict)

Or do everything in a single line...

log.update(time_tic, stats_tic, model, fig, extra, save=True)

File Structure & Re-Loading 📚

The MLELogger will create a nested directory, which looks as follows:

experiment_dir
├── extra: Stores saved .pkl object files
├── figures: Stores saved .png figures
├── logs: Stores .hdf5 log files (meta, stats, time)
├── models: Stores different model checkpoints
    ├── final: Stores most recent checkpoint
    ├── every_k: Stores every k-th checkpoint provided in update
    ├── top_k: Stores portfolio of top-k checkpoints based on performance
├── tboards: Stores tensorboards for model checkpointing
├── .json: Copy of configuration file (if provided)

For visualization and post-processing load the results via

>> log_out.meta.keys() # odict_keys(['experiment_dir', 'extra_storage_paths', 'fig_storage_paths', 'log_paths', 'model_ckpt', 'model_type']) # >>> log_out.stats.keys() # odict_keys(['test_loss', 'train_loss']) # >>> log_out.time.keys() # odict_keys(['time', 'num_epochs', 'num_updates', 'time_elapsed']) ">
from mle_logging import load_log
log_out = load_log("experiment_dir/")

# The results can be accessed via meta, stats and time keys
# >>> log_out.meta.keys()
# odict_keys(['experiment_dir', 'extra_storage_paths', 'fig_storage_paths', 'log_paths', 'model_ckpt', 'model_type'])
# >>> log_out.stats.keys()
# odict_keys(['test_loss', 'train_loss'])
# >>> log_out.time.keys()
# odict_keys(['time', 'num_epochs', 'num_updates', 'time_elapsed'])

If an experiment was aborted, you can reload and continue the previous run via the reload=True option:

log = MLELogger(time_to_track=['num_updates', 'num_epochs'],
                what_to_track=['train_loss', 'test_loss'],
                experiment_dir="experiment_dir/",
                model_type='torch',
                reload=True)

Installation

A PyPI installation is available via:

pip install mle-logging

Alternatively, you can clone this repository and afterwards 'manually' install it:

git clone https://github.com/RobertTLange/mle-logging.git
cd mle-logging
pip install -e .

Advanced Options 🚴

Merging Multiple Logs 👫

Merging Multiple Random Seeds 🌱 + 🌱

>> log.eval_ids # ['seed_1', 'seed_2'] ">
from mle_logging import merge_seed_logs
merge_seed_logs("multi_seed.hdf", "experiment_dir/")
log_out = load_log("experiment_dir/")
# >>> log.eval_ids
# ['seed_1', 'seed_2']

Merging Multiple Configurations 🔖 + 🔖

>> log.eval_ids # ['config_2', 'config_1'] # >>> meta_log.config_1.stats.test_loss.keys() # odict_keys(['mean', 'std', 'p50', 'p10', 'p25', 'p75', 'p90'])) ">
from mle_logging import merge_config_logs, load_meta_log
merge_config_logs(experiment_dir="experiment_dir/",
                  all_run_ids=["config_1", "config_2"])
meta_log = load_meta_log("multi_config_dir/meta_log.hdf5")
# >>> log.eval_ids
# ['config_2', 'config_1']
# >>> meta_log.config_1.stats.test_loss.keys()
# odict_keys(['mean', 'std', 'p50', 'p10', 'p25', 'p75', 'p90']))

Plotting of Logs 🧑‍🎨

meta_log = load_meta_log("multi_config_dir/meta_log.hdf5")
meta_log.plot("train_loss", "num_updates")

Storing Checkpoint Portfolios 📂

Logging every k-th checkpoint update ...

# Save every second checkpoint provided in log.update (stored in models/every_k)
log = MLELogger(time_to_track=['num_updates', 'num_epochs'],
                what_to_track=['train_loss', 'test_loss'],
                experiment_dir='every_k_dir/',
                model_type='torch',
                ckpt_time_to_track='num_updates',
                save_every_k_ckpt=2)

Logging top-k checkpoints based on metric 🔱

# Save top-3 checkpoints provided in log.update (stored in models/top_k)
# Based on minimizing the test_loss metric
log = MLELogger(time_to_track=['num_updates', 'num_epochs'],
                what_to_track=['train_loss', 'test_loss'],
                experiment_dir="top_k_dir/",
                model_type='torch',
                ckpt_time_to_track='num_updates',
                save_top_k_ckpt=3,
                top_k_metric_name="test_loss",
                top_k_minimize_metric=True)

Development & Milestones for Next Release

You can run the test suite via python -m pytest -vv tests/. If you find a bug or are missing your favourite feature, feel free to contact me @RobertTLange or create an issue 🤗 . Here are some features I want to implement for the next release:

  • Add a progress bar if total number of updates is specified
  • Add Weights and Biases Backend Support
  • Extend Tensorboard logging (for JAX/TF models)
Comments
  • Make `pickle5` requirement Python version dependent

    Make `pickle5` requirement Python version dependent

    The pickle5 dependency forces python < 3.8. If I understand it correctly, pickle5 is only there to backport pickle features that were added with Python 3.8, right? I modified the dependency to only apply for Python < 3.8. With this I was able to install mle-logging in my Python 3.9 environment.

    I also modified the only place where pickle5 was used. Didn't test anything, I was hoping this PR would trigger some tests to make sure I didn't break anything (didn't want to install all those test dependencies locally :P).

    opened by denisalevi 2
  • Missing sample json config files break colab demo

    Missing sample json config files break colab demo

    Hello!

    Just read your blogpost and ~50% of the way through the colab demo, and I have to say that so far it looks like this project has the potential to be profoundly clarifying in how it simplifies & abstracts various pieces of key experiment logic that otherwise suffers from unnecessary complexity. As a PhD student who has had to refactor my whole experimental configuration workflow more times than I would like to admit to even myself, I'm super excited to try out your logger!

    I'd also like to commend you for how to-the-point your choice of explanatory examples were for the blogpost. Too many frameworks fill their docs with a bunch of overly-simplistic toy problems and fail to bridge the gap between these and a real experimental situation (e.g. the elegant layout of your multi-seed, multi-config experiment

    That said, my experience working through your demo was interrupted once I reached the section "Log Different Random Seeds for Same Configuration". It seems this code cell references a file called "config_1.json", which doesnt exist. While I'm sure I could figure out a simple json file with 1-2 example items, this kind of guesswork distracts immensely from the otherwise very elegant flow from simple to complex that you've set up. I also assume your target audience stretches further than experienced coders, so providing a simple demo config file to reduce the time from reading->coding seems worthwhile.

    tldr; the colab needs 1-2 demo config json files

    opened by JacobARose 1
  • Add `wandb` support

    Add `wandb` support

    I want to add a weights&biases backend which performs automatic grouping across seeds/search experiments. The credentials can be passed as options at initialization of MLELogger and a WandbLogger object has to be added.

    When calling log.update this will then automatically forward all info with correct grouping by project/search/config/seed to W&B.

    Think about how to integrate gradients/weights from flax/jax models in a natural way (tree flattening?).

    opened by RobertTLange 0
  • Merge `experiment_dir` for different seeds into single one

    Merge `experiment_dir` for different seeds into single one

    I would like to have utilities for merging two experiments which are identical except for the seed_id they used (probably only for the multiple-configs case). Steps should include something like this:

      1. Check that experiments are actually identical.
      1. Identify different seeds.
      1. Create new results directory.
      1. Copy over extra/, figures/ for different seeds.
      1. Open both logs (for all configs) and combine them.
      1. Clean-up old directories for different experiments.
    opened by RobertTLange 0
  • [Bug]

    [Bug] "OSError: Can't write data" if `what_to_track` has certain Types

    Code to recreate:

    from mle_logging import MLELogger
    
    # Instantiate logging to experiment_dir
    log = MLELogger(time_to_track=['num_updates', 'num_epochs'],
                    what_to_track=['train_loss', 'test_loss'],
                    experiment_dir="experiment_dir/",
                    config_dict={"train_config": {"lrate": 0.01}},
                    use_tboard=False,
                    model_type='torch',
                    print_every_k_updates=1,
                    verbose=True)
    
    # Save some time series statistics
    time_tic = {'num_updates': 10, 'num_epochs': 1}
    stats_tic = {'train_loss': 1, 'test_loss': 1}
    
    # Update the log with collected data & save it to .hdf5
    log.update(time_tic, stats_tic)
    log.save()
    

    Output from the console:

    Traceback (most recent call last):
      File "mle-log-test.py", line 19, in <module>
        log.save()
      File "/home/luc/.local/lib/python3.8/site-packages/mle_logging/mle_logger.py", line 417, in save
        write_to_hdf5(
      File "/home/luc/.local/lib/python3.8/site-packages/mle_logging/utils.py", line 74, in write_to_hdf5
        h5f.create_dataset(
      File "/home/luc/.local/lib/python3.8/site-packages/h5py/_hl/group.py", line 149, in create_dataset
        dsid = dataset.make_new_dset(group, shape, dtype, data, name, **kwds)
      File "/home/luc/.local/lib/python3.8/site-packages/h5py/_hl/dataset.py", line 143, in make_new_dset
        dset_id.write(h5s.ALL, h5s.ALL, data)
      File "h5py/_objects.pyx", line 54, in h5py._objects.with_phil.wrapper
      File "h5py/_objects.pyx", line 55, in h5py._objects.with_phil.wrapper
      File "h5py/h5d.pyx", line 232, in h5py.h5d.DatasetID.write
      File "h5py/_proxy.pyx", line 114, in h5py._proxy.dset_rw
    OSError: Can't write data (no appropriate function for conversion path)
    

    The above code is essentially the Getting Started code with the what_to_track Float values swapped out for Ints. If only 1 of the Floats is swapped for an Int, it still works (I guess it casts the Int to a Float?). I also found the same issue if the what_to_track values are Floats from a DeviceArray.

    Please let me know if you have any suggestions or questions!

    opened by DiamonDiva 0
Releases(v0.0.4)
  • v0.0.4(Dec 7, 2021)

    • [x] Add plot details (title, labels) to meta_log.plot()
    • [x] Get rid of time string in sub directories
    • [x] Make log merging more robust
    • [x] Small fixes for mle-monitor release
    • [x] Fix overwrite and make verbose warning
    Source code(tar.gz)
    Source code(zip)
  • v0.0.3(Sep 11, 2021)

    🎉 Mini-release getting rid of small bugs and adding functionality (🐛 & 📈 ) :

    1. Add function to store initial model checkpoint for post-processing via log.save_init_model(model).

    2. Fix byte decoding for strings stored as arrays in .hdf5 log file. Previously this only worked for multi seed/config settings.

    3. MLELogger got a new optional argument: config_dict, which allows you to provide a (nested) configuration of your experiment. It will be stored as a .yaml file if you don't provide a path to an alternative configuration file. The file can either be a .json or a .yaml:

    log = MLELogger(time_to_track=['num_updates', 'num_epochs'],
                    what_to_track=['train_loss', 'test_loss'],
                    experiment_dir="experiment_dir/",
                    config_dict={"train_config": {"lrate": 0.01}},
                    model_type='torch',
                    verbose=True)
    
    1. The config_dict/ loaded config_fname data will be stored in the meta data of the loaded log and can be easily retrieved:
    log = load_log("experiment_dir/")
    log.meta.config_dict
    
    Source code(tar.gz)
    Source code(zip)
  • v0.0.1(Aug 18, 2021)

Owner
Robert Lange
Deep Something @ TU Berlin 🕵️
Robert Lange
Quantum Machine Learning

The Machine Learning package simply contains sample datasets at present. It has some classification algorithms such as QSVM and VQC (Variational Quantum Classifier), where this data can be used for e

Qiskit 364 Jan 08, 2023
SIMD-accelerated bitwise hamming distance Python module for hexidecimal strings

hexhamming What does it do? This module performs a fast bitwise hamming distance of two hexadecimal strings. This looks like: DEADBEEF = 1101111010101

Michael Recachinas 12 Oct 14, 2022
Library of Stan Models for Survival Analysis

survivalstan: Survival Models in Stan author: Jacki Novik Overview Library of Stan Models for Survival Analysis Features: Variety of standard survival

Hammer Lab 122 Jan 06, 2023
using Machine Learning Algorithm to classification AppleStore application

AppleStore-classification-with-Machine-learning-Algo- using Machine Learning Algorithm to classification AppleStore application. the first step : 1: p

Mohammed Hussien 2 May 02, 2022
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch

LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is imp

432 Jan 05, 2023
Tools for mathematical optimization region

Tools for mathematical optimization region

林景 15 Nov 30, 2022
MLR - Machine Learning Research

Machine Learning Research 1. Project Topic 1.1. Exsiting research Benmark: https://paperswithcode.com/sota ACL anthology for NLP papers: http://www.ac

Charles 69 Oct 20, 2022
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
This is an auto-ML tool specialized in detecting of outliers

Auto-ML tool specialized in detecting of outliers Description This tool will allows you, with a Dash visualization, to compare 10 models of machine le

1 Nov 03, 2021
Flightfare-Prediction - It is a Flightfare Prediction Web Application Using Machine learning,Python and flask

Flight_fare-Prediction It is a Flight_fare Prediction Web Application Using Machine learning,Python and flask Using Machine leaning i have created a F

1 Dec 06, 2022
Retrieve annotated intron sequences and classify them as minor (U12-type) or major (U2-type)

(intron I nterrogator and C lassifier) intronIC is a program that can be used to classify intron sequences as minor (U12-type) or major (U2-type), usi

Graham Larue 4 Jul 26, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
inding a method to objectively quantify skill versus chance in games, using reinforcement learning

Skill-vs-chance-games-analysis - Finding a method to objectively quantify skill versus chance in games, using reinforcement learning

Marcus Chiam 4 Nov 19, 2022
pywFM is a Python wrapper for Steffen Rendle's factorization machines library libFM

pywFM pywFM is a Python wrapper for Steffen Rendle's libFM. libFM is a Factorization Machine library: Factorization machines (FM) are a generic approa

João Ferreira Loff 251 Sep 23, 2022
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022
Python Machine Learning Jupyter Notebooks (ML website)

Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also

Tirthajyoti Sarkar 2.6k Jan 03, 2023
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022
Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

Sontag Lab 75 Jan 03, 2023