Simple and flexible ML workflow engine.

Overview

Katana ML Skipper

PyPI - Python GitHub Stars GitHub Issues Current Version

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable with any microservices. Enjoy!

Skipper

Author

Katana ML, Andrej Baranovskij

Instructions

Start/Stop

Docker Compose

Start:

docker-compose up --build -d

Stop:

docker-compose down

This will start RabbitMQ container. To run engine and services, navigate to related folders and follow instructions.

Web API FastAPI endpoint:

http://127.0.0.1:8080/api/v1/skipper/tasks/docs

Kubernetes

NGINX Ingress Controller:

If you are using local Kubernetes setup, install NGINX Ingress Controller

Build Docker images:

docker-compose -f docker-compose-kubernetes.yml build

Setup Kubernetes services:

./kubectl-setup.sh

Skipper API endpoint published through NGINX Ingress (you can setup your own host in /etc/hosts):

http://kubernetes.docker.internal/api/v1/skipper/tasks/docs

Check NGINX Ingress Controller pod name:

kubectl get pods -n ingress-nginx

Sample response, copy the name of 'Running' pod:

NAME                                       READY   STATUS      RESTARTS   AGE
ingress-nginx-admission-create-dhtcm       0/1     Completed   0          14m
ingress-nginx-admission-patch-x8zvw        0/1     Completed   0          14m
ingress-nginx-controller-fd7bb8d66-tnb9t   1/1     Running     0          14m

NGINX Ingress Controller logs:

kubectl logs -n ingress-nginx -f 
   

   

Skipper API logs:

kubectl logs -n katana-skipper -f -l app=skipper-api

Remove Kubernetes services:

./kubectl-remove.sh

Components

  • api - Web API implementation
  • workflow - workflow logic
  • services - a set of sample microservices, you should replace this with your own services. Update references in docker-compose.yml
  • rabbitmq - service for RabbitMQ broker
  • skipper-lib - reusable Python library to streamline event communication through RabbitMQ
  • logger - logger service

URLs

  • Web API
http://127.0.0.1:8080/api/v1/skipper/tasks/docs

If running on local Kubernetes with Docker Desktop:

http://kubernetes.docker.internal/api/v1/skipper/tasks/docs
  • RabbitMQ:
http://localhost:15672/ (skipper/welcome1)

If running on local Kubernets, make sure port forwarding is enabled:

kubectl -n rabbits port-forward rabbitmq-0 15672:15672
  • PyPI
https://pypi.org/project/skipper-lib/
  • OCI - deployment guide for Oracle Cloud

Usage

You can use Skipper engine to run Web API, workflow and communicate with a group of ML microservices implemented under services package.

Skipper can be deployed to any Cloud vendor with Kubernetes or Docker support. You can scale Skipper runtime on Cloud using Kubernetes commands.

License

Licensed under the Apache License, Version 2.0. Copyright 2020-2021 Katana ML, Andrej Baranovskij. Copy of the license.

Comments
  • Cache EventProducer

    Cache EventProducer

    I found that cache the EventProducer can improve performace 40%. I tried but it block may request when increase the speed test. Do you have suggest to fix that

    opened by manhtd98 7
  • Docker-compose up not working

    Docker-compose up not working

    Hi

    Thank you for the wonderful katana-skipper. I am trying to digest the library and execute the docker-compose.yml. But it seems like it is not working.

    Would appreciate it if you could take a look

    good first issue 
    opened by jamesee 6
  • Doc: How to add a new service with a new queue

    Doc: How to add a new service with a new queue

    How do we add a new service with a new queue called translator?

    1. I add a new router adding a new path for my new service defining a new prefix and tag named translator.
    2. I create a new request model for my new service in models.py containing task_type and expect a type translator and a payload
    3. I define a new service container with the correct variables and set my SERVICE=translator and QUEUE_NAME=skipper_translator

    I am able to call the new endpoint and it returns:

    task_id: "-", 
    task_status: "Success", 
    outcome: "<starlette.responses.JSONResponse object at 0x7ff2672dbed0>"
    

    However the container is never triggered.

    What am I missing?

    opened by ladrua 4
  • The difference between event_producer and exchange_producer

    The difference between event_producer and exchange_producer

    Hello, Thanks for sharing your ML workflow. I appreciate if you could explain the difference between event_producer and exchange_producer. event_producer is used to produce an event to rabbitmq, but exchange_producer is not clear to me. Can't we use event_producer in place of exchange_producer?

    good first issue 
    opened by fadishaar84 4
  • Encountering Authentication Issues

    Encountering Authentication Issues

    When I run the start command on docker I get the following error in the data-service container. Would greatly appreciate guidance on how to fix this issue. ` data-service katanaml/data-service RUNNING

    Traceback (most recent call last):

    File "main.py", line 19, in

    main()
    

    File "main.py", line 15, in main

    'http://127.0.0.1:5001/api/v1/skipper/logger/log_receiver'))
    

    File "/usr/local/lib/python3.7/site-packages/skipper_lib/events/event_receiver.py", line 16, in init

    credentials=credentials))
    

    File "/usr/local/lib/python3.7/site-packages/pika/adapters/blocking_connection.py", line 360, in init

    self._impl = self._create_connection(parameters, _impl_class)
    

    File "/usr/local/lib/python3.7/site-packages/pika/adapters/blocking_connection.py", line 451, in _create_connection

    raise self._reap_last_connection_workflow_error(error)
    

    pika.exceptions.AMQPConnectionError

    Traceback (most recent call last):

    File "main.py", line 19, in

    main()
    

    File "main.py", line 15, in main

    'http://127.0.0.1:5001/api/v1/skipper/logger/log_receiver'))
    

    File "/usr/local/lib/python3.7/site-packages/skipper_lib/events/event_receiver.py", line 16, in init

    credentials=credentials))
    

    File "/usr/local/lib/python3.7/site-packages/pika/adapters/blocking_connection.py", line 360, in init

    self._impl = self._create_connection(parameters, _impl_class)
    

    File "/usr/local/lib/python3.7/site-packages/pika/adapters/blocking_connection.py", line 451, in _create_connection

    raise self._reap_last_connection_workflow_error(error)
    

    pika.exceptions.ProbableAuthenticationError: ConnectionClosedByBroker: (403) 'ACCESS_REFUSED - Login was refused using authentication mechanism PLAIN. For details see the broker logfi`

    opened by LM-01 3
  • How can we move from docker compose to kubernetes?

    How can we move from docker compose to kubernetes?

    Hello Andrej, I would like to ask about how to move from docker-compose to Kubernetes, do we have to use some tools like kompose or other tools, I appreciate if you could guide me a little bit about how to perform this conversion to run our services on Skipper not using docker compose but kubernetes. Thank you.

    opened by fadishaar84 2
Releases(v1.1.0)
  • v1.1.0(Dec 11, 2021)

    This release of Katana ML Skipper includes:

    • Skipper Lib JS - support for Node.js containers
    • Error handling
    • Configurable FastAPI endpoints
    • Various improvements and bug fixes

    What's Changed

    • (README.md) Adding Andrej's profile url by @xandrade in https://github.com/katanaml/katana-skipper/pull/3

    New Contributors

    • @xandrade made their first contribution in https://github.com/katanaml/katana-skipper/pull/3

    Full Changelog: https://github.com/katanaml/katana-skipper/compare/v1.0.0...v1.1.0

    Source code(tar.gz)
    Source code(zip)
  • v1.0.0(Oct 9, 2021)

    First production release of Katana ML Skipper.

    Included:

    • Logger
    • Workflow
    • API async and sync
    • Services
    • Docker support
    • Kubernetes support
    • Tested on OCI Cloud

    Full Changelog: https://github.com/katanaml/katana-skipper/commits/v1.0.0

    Source code(tar.gz)
    Source code(zip)
Owner
Katana ML
Machine Learning for Business Automation
Katana ML
Tools for Optuna, MLflow and the integration of both.

HPOflow - Sphinx DOC Tools for Optuna, MLflow and the integration of both. Detailed documentation with examples can be found here: Sphinx DOC Table of

Telekom Open Source Software 17 Nov 20, 2022
Decision Tree Regression algorithm implemented on Python from scratch.

Decision_Tree_Regression I implemented the decision tree regression algorithm on Python. Unlike regular linear regression, this algorithm is used when

1 Dec 22, 2021
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.

Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and many other libraries. Documenta

2.5k Jan 07, 2023
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022
Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

2 Jun 14, 2022
cuML - RAPIDS Machine Learning Library

cuML - GPU Machine Learning Algorithms cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions t

RAPIDS 3.1k Dec 28, 2022
Anomaly Detection and Correlation library

luminol Overview Luminol is a light weight python library for time series data analysis. The two major functionalities it supports are anomaly detecti

LinkedIn 1.1k Jan 01, 2023
Hierarchical Time Series Forecasting using Prophet

htsprophet Hierarchical Time Series Forecasting using Prophet Credit to Rob J. Hyndman and research partners as much of the code was developed with th

Collin Rooney 131 Dec 02, 2022
LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.

LibRerank LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRer

126 Dec 28, 2022
A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

MLOps template with examples for Data pipelines, ML workflow management, API development and Monitoring.

Utsav 33 Dec 03, 2022
BigDL: Distributed Deep Learning Framework for Apache Spark

BigDL: Distributed Deep Learning on Apache Spark What is BigDL? BigDL is a distributed deep learning library for Apache Spark; with BigDL, users can w

4.1k Jan 09, 2023
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
An implementation of Relaxed Linear Adversarial Concept Erasure (RLACE)

Background This repository contains an implementation of Relaxed Linear Adversarial Concept Erasure (RLACE). Given a dataset X of dense representation

Shauli Ravfogel 4 Apr 13, 2022
A linear regression model for house price prediction

Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install

ShawnWang 1 Nov 29, 2021
Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational model)

Sum-Square_Error-Business-Analytical-Tool- Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational m

om Podey 1 Dec 03, 2021
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
Apache Spark & Python (pySpark) tutorials for Big Data Analysis and Machine Learning as IPython / Jupyter notebooks

Spark Python Notebooks This is a collection of IPython notebook/Jupyter notebooks intended to train the reader on different Apache Spark concepts, fro

Jose A Dianes 1.5k Jan 02, 2023
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
Machine Learning Algorithms ( Desion Tree, XG Boost, Random Forest )

implementation of machine learning Algorithms such as decision tree and random forest and xgboost on darasets then compare results for each and implement ant colony and genetic algorithms on tsp map,

Mohamadreza Rezaei 1 Jan 19, 2022
Decision tree is the most powerful and popular tool for classification and prediction

Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision

Arjun U 1 Jan 23, 2022