YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Overview

Introduction

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our report on Arxiv.

Updates!!

  • 【2021/07/20】 We have released our technical report on Arxiv.

Comming soon

  • YOLOX-P6 and larger model.
  • Objects365 pretrain.
  • Transformer modules.
  • More features in need.

Benchmark

Standard Models.

Model size mAPtest
0.5:0.95
Speed V100
(ms)
Params
(M)
FLOPs
(G)
weights
YOLOX-s 640 39.6 9.8 9.0 26.8 onedrive/github
YOLOX-m 640 46.4 12.3 25.3 73.8 onedrive/github
YOLOX-l 640 50.0 14.5 54.2 155.6 onedrive/github
YOLOX-x 640 51.2 17.3 99.1 281.9 onedrive/github
YOLOX-Darknet53 640 47.4 11.1 63.7 185.3 onedrive/github

Light Models.

Model size mAPval
0.5:0.95
Params
(M)
FLOPs
(G)
weights
YOLOX-Nano 416 25.3 0.91 1.08 onedrive/github
YOLOX-Tiny 416 31.7 5.06 6.45 onedrive/github

Quick Start

Installation

Step1. Install YOLOX.

git clone [email protected]:Megvii-BaseDetection/YOLOX.git
cd YOLOX
pip3 install -U pip && pip3 install -r requirements.txt
pip3 install -v -e .  # or  python3 setup.py develop

Step2. Install apex.

# skip this step if you don't want to train model.
git clone https://github.com/NVIDIA/apex
cd apex
pip3 install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Step3. Install pycocotools.

pip3 install cython; pip3 install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
Demo

Step1. Download a pretrained model from the benchmark table.

Step2. Use either -n or -f to specify your detector's config. For example:

python tools/demo.py image -n yolox-s -c /path/to/your/yolox_s.pth.tar --path assets/dog.jpg --conf 0.3 --nms 0.65 --tsize 640 --save_result --device [cpu/gpu]

or

python tools/demo.py image -f exps/default/yolox_s.py -c /path/to/your/yolox_s.pth.tar --path assets/dog.jpg --conf 0.3 --nms 0.65 --tsize 640 --save_result --device [cpu/gpu]

Demo for video:

python tools/demo.py video -n yolox-s -c /path/to/your/yolox_s.pth.tar --path /path/to/your/video --conf 0.3 --nms 0.65 --tsize 640 --save_result --device [cpu/gpu]
Reproduce our results on COCO

Step1. Prepare COCO dataset

cd <YOLOX_HOME>
ln -s /path/to/your/COCO ./datasets/COCO

Step2. Reproduce our results on COCO by specifying -n:

python tools/train.py -n yolox-s -d 8 -b 64 --fp16 -o
                         yolox-m
                         yolox-l
                         yolox-x
  • -d: number of gpu devices
  • -b: total batch size, the recommended number for -b is num-gpu * 8
  • --fp16: mixed precision training

When using -f, the above commands are equivalent to:

python tools/train.py -f exps/default/yolox-s.py -d 8 -b 64 --fp16 -o
                         exps/default/yolox-m.py
                         exps/default/yolox-l.py
                         exps/default/yolox-x.py
Evaluation

We support batch testing for fast evaluation:

python tools/eval.py -n  yolox-s -c yolox_s.pth.tar -b 64 -d 8 --conf 0.001 [--fp16] [--fuse]
                         yolox-m
                         yolox-l
                         yolox-x
  • --fuse: fuse conv and bn
  • -d: number of GPUs used for evaluation. DEFAULT: All GPUs available will be used.
  • -b: total batch size across on all GPUs

To reproduce speed test, we use the following command:

python tools/eval.py -n  yolox-s -c yolox_s.pth.tar -b 1 -d 1 --conf 0.001 --fp16 --fuse
                         yolox-m
                         yolox-l
                         yolox-x
Tutorials

Deployment

  1. ONNX export and an ONNXRuntime
  2. TensorRT in C++ and Python
  3. ncnn in C++ and Java
  4. OpenVINO in C++ and Python

Cite YOLOX

If you use YOLOX in your research, please cite our work by using the following BibTeX entry:

 @article{yolox2021,
  title={YOLOX: Exceeding YOLO Series in 2021},
  author={Ge, Zheng and Liu, Songtao and Wang, Feng and Li, Zeming and Sun, Jian},
  journal={arXiv preprint arXiv:2107.08430},
  year={2021}
}
Comments
  • The mAP is always 0 when I train on my custom data in coco format?

    The mAP is always 0 when I train on my custom data in coco format?

    I tried to train on my custom data in coco format but no matter how I train for 10 epochs or 300 epochs I still get mAP=0,my custom data is originally in YOLOV5 format so I use this https://github.com/RapidAI/YOLO2COCO to convert my YOLOV5 format data into coco format and I also check the label which is correct.Besides I also have changed the classes in yolox/data/datasets/coco_classes.py to my own classes.However the result disappointed me again,then I tried to use the datasets https://drive.google.com/file/d/16N3u36ycNd70m23IM7vMuRQXejAJY9Fs/view?usp=sharing you guys suggest in the train_custom_data.md,but for well-known reasons in China I can hardly download it,so I also suggest you provide a BaiduYun version which is more friendly to our students. Here is my train_log.txt: 2021-08-15 21:54:11.090 | INFO | yolox.core.trainer:before_train:126 - args: Namespace(experiment_name='606', name=None, dist_backend='nccl', dist_url=None, batch_size=8, devices=0, exp_file='exps/example/custom/606.py', resume=False, ckpt='yolox_s.pth', start_epoch=None, num_machines=1, machine_rank=0, fp16=True, occupy=False, opts=[]) 2021-08-15 21:54:11.091 | INFO | yolox.core.trainer:before_train:127 - exp value: ╒══════════════════╤════════════════════════════╕ │ keys │ values │ ╞══════════════════╪════════════════════════════╡ │ seed │ None │ ├──────────────────┼────────────────────────────┤ │ output_dir │ './YOLOX_outputs' │ ├──────────────────┼────────────────────────────┤ │ print_interval │ 10 │ ├──────────────────┼────────────────────────────┤ │ eval_interval │ 1 │ ├──────────────────┼────────────────────────────┤ │ num_classes │ 8 │ ├──────────────────┼────────────────────────────┤ │ depth │ 0.33 │ ├──────────────────┼────────────────────────────┤ │ width │ 0.5 │ ├──────────────────┼────────────────────────────┤ │ data_num_workers │ 0 │ ├──────────────────┼────────────────────────────┤ │ input_size │ (640, 640) │ ├──────────────────┼────────────────────────────┤ │ random_size │ (14, 26) │ ├──────────────────┼────────────────────────────┤ │ data_dir │ 'datasets/coco128' │ ├──────────────────┼────────────────────────────┤ │ train_ann │ 'instances_train2017.json' │ ├──────────────────┼────────────────────────────┤ │ val_ann │ 'instances_val2017.json' │ ├──────────────────┼────────────────────────────┤ │ degrees │ 10.0 │ ├──────────────────┼────────────────────────────┤ │ translate │ 0.1 │ ├──────────────────┼────────────────────────────┤ │ scale │ (0.1, 2) │ ├──────────────────┼────────────────────────────┤ │ mscale │ (0.8, 1.6) │ ├──────────────────┼────────────────────────────┤ │ shear │ 2.0 │ ├──────────────────┼────────────────────────────┤ │ perspective │ 0.0 │ ├──────────────────┼────────────────────────────┤ │ enable_mixup │ True │ ├──────────────────┼────────────────────────────┤ │ warmup_epochs │ 5 │ ├──────────────────┼────────────────────────────┤ │ max_epoch │ 10 │ ├──────────────────┼────────────────────────────┤ │ warmup_lr │ 0 │ ├──────────────────┼────────────────────────────┤ │ basic_lr_per_img │ 0.00015625 │ ├──────────────────┼────────────────────────────┤ │ scheduler │ 'yoloxwarmcos' │ ├──────────────────┼────────────────────────────┤ │ no_aug_epochs │ 15 │ ├──────────────────┼────────────────────────────┤ │ min_lr_ratio │ 0.05 │ ├──────────────────┼────────────────────────────┤ │ ema │ True │ ├──────────────────┼────────────────────────────┤ │ weight_decay │ 0.0005 │ ├──────────────────┼────────────────────────────┤ │ momentum │ 0.9 │ ├──────────────────┼────────────────────────────┤ │ exp_name │ '606' │ ├──────────────────┼────────────────────────────┤ │ test_size │ (640, 640) │ ├──────────────────┼────────────────────────────┤ │ test_conf │ 0.01 │ ├──────────────────┼────────────────────────────┤ │ nmsthre │ 0.65 │ ╘══════════════════╧════════════════════════════╛ 2021-08-15 21:54:11.239 | INFO | yolox.core.trainer:before_train:132 - Model Summary: Params: 8.94M, Gflops: 26.65 2021-08-15 21:54:13.208 | INFO | apex.amp.frontend:initialize:328 - Selected optimization level O1: Insert automatic casts around Pytorch functions and Tensor methods. 2021-08-15 21:54:13.208 | INFO | apex.amp.frontend:initialize:329 - Defaults for this optimization level are: 2021-08-15 21:54:13.209 | INFO | apex.amp.frontend:initialize:331 - enabled : True 2021-08-15 21:54:13.209 | INFO | apex.amp.frontend:initialize:331 - opt_level : O1 2021-08-15 21:54:13.209 | INFO | apex.amp.frontend:initialize:331 - cast_model_type : None 2021-08-15 21:54:13.210 | INFO | apex.amp.frontend:initialize:331 - patch_torch_functions : True 2021-08-15 21:54:13.210 | INFO | apex.amp.frontend:initialize:331 - keep_batchnorm_fp32 : None 2021-08-15 21:54:13.210 | INFO | apex.amp.frontend:initialize:331 - master_weights : None 2021-08-15 21:54:13.210 | INFO | apex.amp.frontend:initialize:331 - loss_scale : dynamic 2021-08-15 21:54:13.211 | INFO | apex.amp.frontend:initialize:336 - Processing user overrides (additional kwargs that are not None)... 2021-08-15 21:54:13.211 | INFO | apex.amp.frontend:initialize:354 - After processing overrides, optimization options are: 2021-08-15 21:54:13.211 | INFO | apex.amp.frontend:initialize:356 - enabled : True 2021-08-15 21:54:13.212 | INFO | apex.amp.frontend:initialize:356 - opt_level : O1 2021-08-15 21:54:13.213 | INFO | apex.amp.frontend:initialize:356 - cast_model_type : None 2021-08-15 21:54:13.214 | INFO | apex.amp.frontend:initialize:356 - patch_torch_functions : True 2021-08-15 21:54:13.215 | INFO | apex.amp.frontend:initialize:356 - keep_batchnorm_fp32 : None 2021-08-15 21:54:13.216 | INFO | apex.amp.frontend:initialize:356 - master_weights : None 2021-08-15 21:54:13.217 | INFO | apex.amp.frontend:initialize:356 - loss_scale : dynamic 2021-08-15 21:54:13.221 | INFO | apex.amp.scaler:init:64 - Warning: multi_tensor_applier fused unscale kernel is unavailable, possibly because apex was installed without --cuda_ext --cpp_ext. Using Python fallback. Original ImportError was: ModuleNotFoundError("No module named 'amp_C'") 2021-08-15 21:54:13.223 | INFO | yolox.core.trainer:resume_train:292 - loading checkpoint for fine tuning 2021-08-15 21:54:13.351 | WARNING | yolox.utils.checkpoint:load_ckpt:24 - Shape of head.cls_preds.0.weight in checkpoint is torch.Size([80, 128, 1, 1]), while shape of head.cls_preds.0.weight in model is torch.Size([8, 128, 1, 1]). 2021-08-15 21:54:13.352 | WARNING | yolox.utils.checkpoint:load_ckpt:24 - Shape of head.cls_preds.0.bias in checkpoint is torch.Size([80]), while shape of head.cls_preds.0.bias in model is torch.Size([8]). 2021-08-15 21:54:13.352 | WARNING | yolox.utils.checkpoint:load_ckpt:24 - Shape of head.cls_preds.1.weight in checkpoint is torch.Size([80, 128, 1, 1]), while shape of head.cls_preds.1.weight in model is torch.Size([8, 128, 1, 1]). 2021-08-15 21:54:13.352 | WARNING | yolox.utils.checkpoint:load_ckpt:24 - Shape of head.cls_preds.1.bias in checkpoint is torch.Size([80]), while shape of head.cls_preds.1.bias in model is torch.Size([8]). 2021-08-15 21:54:13.352 | WARNING | yolox.utils.checkpoint:load_ckpt:24 - Shape of head.cls_preds.2.weight in checkpoint is torch.Size([80, 128, 1, 1]), while shape of head.cls_preds.2.weight in model is torch.Size([8, 128, 1, 1]). 2021-08-15 21:54:13.353 | WARNING | yolox.utils.checkpoint:load_ckpt:24 - Shape of head.cls_preds.2.bias in checkpoint is torch.Size([80]), while shape of head.cls_preds.2.bias in model is torch.Size([8]). 2021-08-15 21:54:13.377 | INFO | yolox.data.datasets.coco:init:43 - loading annotations into memory... 2021-08-15 21:54:13.405 | INFO | yolox.data.datasets.coco:init:43 - Done (t=0.03s) 2021-08-15 21:54:13.406 | INFO | pycocotools.coco:init:89 - creating index... 2021-08-15 21:54:13.407 | INFO | pycocotools.coco:init:89 - index created! 2021-08-15 21:54:13.433 | INFO | yolox.core.trainer:before_train:153 - init prefetcher, this might take one minute or less... 2021-08-15 21:54:13.746 | INFO | yolox.data.datasets.coco:init:43 - loading annotations into memory... 2021-08-15 21:54:13.749 | INFO | yolox.data.datasets.coco:init:43 - Done (t=0.00s) 2021-08-15 21:54:13.749 | INFO | pycocotools.coco:init:89 - creating index... 2021-08-15 21:54:13.749 | INFO | pycocotools.coco:init:89 - index created! 2021-08-15 21:54:13.759 | INFO | yolox.core.trainer:before_train:183 - Training start... 2021-08-15 21:54:13.762 | INFO | yolox.core.trainer:before_train:184 - YOLOX( (backbone): YOLOPAFPN( (backbone): CSPDarknet( (stem): Focus( (conv): BaseConv( (conv): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) (dark2): Sequential( (0): BaseConv( (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (1): CSPLayer( (conv1): BaseConv( (conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv3): BaseConv( (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (m): Sequential( (0): Bottleneck( (conv1): BaseConv( (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) ) ) (dark3): Sequential( (0): BaseConv( (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (1): CSPLayer( (conv1): BaseConv( (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv3): BaseConv( (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (m): Sequential( (0): Bottleneck( (conv1): BaseConv( (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) (1): Bottleneck( (conv1): BaseConv( (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) (2): Bottleneck( (conv1): BaseConv( (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) ) ) (dark4): Sequential( (0): BaseConv( (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (1): CSPLayer( (conv1): BaseConv( (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv3): BaseConv( (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (m): Sequential( (0): Bottleneck( (conv1): BaseConv( (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) (1): Bottleneck( (conv1): BaseConv( (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) (2): Bottleneck( (conv1): BaseConv( (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) ) ) (dark5): Sequential( (0): BaseConv( (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (1): SPPBottleneck( (conv1): BaseConv( (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (m): ModuleList( (0): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False) (1): MaxPool2d(kernel_size=9, stride=1, padding=4, dilation=1, ceil_mode=False) (2): MaxPool2d(kernel_size=13, stride=1, padding=6, dilation=1, ceil_mode=False) ) (conv2): BaseConv( (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) (2): CSPLayer( (conv1): BaseConv( (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv3): BaseConv( (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (m): Sequential( (0): Bottleneck( (conv1): BaseConv( (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) ) ) ) (upsample): Upsample(scale_factor=2.0, mode=nearest) (lateral_conv0): BaseConv( (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (C3_p4): CSPLayer( (conv1): BaseConv( (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv3): BaseConv( (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (m): Sequential( (0): Bottleneck( (conv1): BaseConv( (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) ) (reduce_conv1): BaseConv( (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (C3_p3): CSPLayer( (conv1): BaseConv( (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv3): BaseConv( (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (m): Sequential( (0): Bottleneck( (conv1): BaseConv( (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) ) (bu_conv2): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (C3_n3): CSPLayer( (conv1): BaseConv( (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv3): BaseConv( (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (m): Sequential( (0): Bottleneck( (conv1): BaseConv( (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) ) (bu_conv1): BaseConv( (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (C3_n4): CSPLayer( (conv1): BaseConv( (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv3): BaseConv( (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (m): Sequential( (0): Bottleneck( (conv1): BaseConv( (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (conv2): BaseConv( (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) ) ) (head): YOLOXHead( (cls_convs): ModuleList( (0): Sequential( (0): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (1): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) (1): Sequential( (0): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (1): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) (2): Sequential( (0): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (1): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) (reg_convs): ModuleList( (0): Sequential( (0): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (1): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) (1): Sequential( (0): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (1): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) (2): Sequential( (0): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (1): BaseConv( (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) ) (cls_preds): ModuleList( (0): Conv2d(128, 8, kernel_size=(1, 1), stride=(1, 1)) (1): Conv2d(128, 8, kernel_size=(1, 1), stride=(1, 1)) (2): Conv2d(128, 8, kernel_size=(1, 1), stride=(1, 1)) ) (reg_preds): ModuleList( (0): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1)) (1): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1)) (2): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1)) ) (obj_preds): ModuleList( (0): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1)) (1): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1)) (2): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1)) ) (stems): ModuleList( (0): BaseConv( (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (1): BaseConv( (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) (2): BaseConv( (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) (act): SiLU(inplace=True) ) ) (l1_loss): L1Loss() (bcewithlog_loss): BCEWithLogitsLoss() (iou_loss): IOUloss() ) ) 2021-08-15 21:54:13.766 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch1 2021-08-15 21:54:13.766 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now! 2021-08-15 21:54:13.767 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now! 2021-08-15 21:54:16.905 | INFO | apex.amp.handle:skip_step:138 - Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0 2021-08-15 21:54:17.337 | INFO | apex.amp.handle:skip_step:138 - Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 2021-08-15 21:54:17.771 | INFO | apex.amp.handle:skip_step:138 - Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0 2021-08-15 21:54:18.230 | INFO | apex.amp.handle:skip_step:138 - Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 4096.0 2021-08-15 21:54:18.684 | INFO | apex.amp.handle:skip_step:138 - Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 2048.0 2021-08-15 21:54:19.135 | INFO | apex.amp.handle:skip_step:138 - Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 1024.0 2021-08-15 21:54:20.592 | INFO | apex.amp.handle:skip_step:138 - Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 512.0 2021-08-15 21:54:21.105 | INFO | yolox.core.trainer:after_iter:242 - epoch: 1/10, iter: 10/88, mem: 3017Mb, iter_time: 0.733s, data_time: 0.208s, total_loss: 21.5, iou_loss: 4.2, l1_loss: 3.2, conf_loss: 12.5, cls_loss: 1.5, lr: 6.457e-07, size: 640, ETA: 0:10:38 2021-08-15 21:54:25.868 | INFO | yolox.core.trainer:after_iter:242 - epoch: 1/10, iter: 20/88, mem: 3017Mb, iter_time: 0.476s, data_time: 0.201s, total_loss: 18.7, iou_loss: 4.2, l1_loss: 2.9, conf_loss: 10.2, cls_loss: 1.5, lr: 2.583e-06, size: 640, ETA: 0:08:39 2021-08-15 21:54:33.831 | INFO | yolox.core.trainer:after_iter:242 - epoch: 1/10, iter: 30/88, mem: 3881Mb, iter_time: 0.796s, data_time: 0.254s, total_loss: 16.9, iou_loss: 4.1, l1_loss: 3.2, conf_loss: 8.0, cls_loss: 1.6, lr: 5.811e-06, size: 704, ETA: 0:09:28 2021-08-15 21:54:41.413 | INFO | yolox.core.trainer:after_iter:242 - epoch: 1/10, iter: 40/88, mem: 3881Mb, iter_time: 0.758s, data_time: 0.219s, total_loss: 14.7, iou_loss: 3.9, l1_loss: 2.7, conf_loss: 6.7, cls_loss: 1.3, lr: 1.033e-05, size: 672, ETA: 0:09:40 2021-08-15 21:54:46.458 | INFO | yolox.core.trainer:after_iter:242 - epoch: 1/10, iter: 50/88, mem: 3881Mb, iter_time: 0.504s, data_time: 0.219s, total_loss: 13.2, iou_loss: 3.5, l1_loss: 2.6, conf_loss: 6.0, cls_loss: 1.2, lr: 1.614e-05, size: 672, ETA: 0:09:02 2021-08-15 21:54:51.804 | INFO | yolox.core.trainer:after_iter:242 - epoch: 1/10, iter: 60/88, mem: 3881Mb, iter_time: 0.534s, data_time: 0.146s, total_loss: 12.2, iou_loss: 3.7, l1_loss: 2.3, conf_loss: 5.3, cls_loss: 0.9, lr: 2.324e-05, size: 512, ETA: 0:08:39 2021-08-15 21:54:55.538 | INFO | yolox.core.trainer:after_iter:242 - epoch: 1/10, iter: 70/88, mem: 3881Mb, iter_time: 0.373s, data_time: 0.143s, total_loss: 11.0, iou_loss: 3.5, l1_loss: 1.9, conf_loss: 4.8, cls_loss: 0.8, lr: 3.164e-05, size: 512, ETA: 0:08:02 2021-08-15 21:55:02.818 | INFO | yolox.core.trainer:after_iter:242 - epoch: 1/10, iter: 80/88, mem: 3881Mb, iter_time: 0.728s, data_time: 0.184s, total_loss: 8.8, iou_loss: 2.8, l1_loss: 1.4, conf_loss: 3.9, cls_loss: 0.7, lr: 4.132e-05, size: 576, ETA: 0:08:10 2021-08-15 21:55:10.084 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 21:55:17.377 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process... 2021-08-15 21:55:17.451 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results... 2021-08-15 21:55:17.473 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.02s) 2021-08-15 21:55:17.474 | INFO | pycocotools.coco:loadRes:365 - creating index... 2021-08-15 21:55:17.475 | INFO | pycocotools.coco:loadRes:365 - index created! 2021-08-15 21:55:17.546 | INFO | yolox.core.trainer:evaluate_and_save_model:315 - Average forward time: 6.26 ms, Average NMS time: 1.11 ms, Average inference time: 7.37 ms Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000

    2021-08-15 21:55:17.547 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 21:55:17.696 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch2 2021-08-15 21:55:17.696 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now! 2021-08-15 21:55:17.697 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now! 2021-08-15 21:55:22.867 | INFO | yolox.core.trainer:after_iter:242 - epoch: 2/10, iter: 10/88, mem: 3881Mb, iter_time: 0.517s, data_time: 0.223s, total_loss: 7.6, iou_loss: 2.6, l1_loss: 1.3, conf_loss: 3.1, cls_loss: 0.7, lr: 6.201e-05, size: 640, ETA: 0:08:10 2021-08-15 21:55:26.814 | INFO | yolox.core.trainer:after_iter:242 - epoch: 2/10, iter: 20/88, mem: 3881Mb, iter_time: 0.394s, data_time: 0.143s, total_loss: 7.0, iou_loss: 2.6, l1_loss: 1.2, conf_loss: 2.5, cls_loss: 0.7, lr: 7.531e-05, size: 512, ETA: 0:07:47 2021-08-15 21:55:32.197 | INFO | yolox.core.trainer:after_iter:242 - epoch: 2/10, iter: 30/88, mem: 3881Mb, iter_time: 0.538s, data_time: 0.140s, total_loss: 5.2, iou_loss: 2.0, l1_loss: 0.8, conf_loss: 1.9, cls_loss: 0.6, lr: 8.990e-05, size: 544, ETA: 0:07:36 2021-08-15 21:55:40.492 | INFO | yolox.core.trainer:after_iter:242 - epoch: 2/10, iter: 40/88, mem: 3881Mb, iter_time: 0.829s, data_time: 0.271s, total_loss: 6.5, iou_loss: 2.1, l1_loss: 1.2, conf_loss: 2.6, cls_loss: 0.6, lr: 1.058e-04, size: 800, ETA: 0:07:44 2021-08-15 21:55:45.579 | INFO | yolox.core.trainer:after_iter:242 - epoch: 2/10, iter: 50/88, mem: 3881Mb, iter_time: 0.508s, data_time: 0.204s, total_loss: 5.5, iou_loss: 2.0, l1_loss: 0.9, conf_loss: 2.1, cls_loss: 0.5, lr: 1.230e-04, size: 640, ETA: 0:07:32 2021-08-15 21:55:53.270 | INFO | yolox.core.trainer:after_iter:242 - epoch: 2/10, iter: 60/88, mem: 3881Mb, iter_time: 0.769s, data_time: 0.252s, total_loss: 4.2, iou_loss: 1.6, l1_loss: 0.8, conf_loss: 1.5, cls_loss: 0.5, lr: 1.414e-04, size: 736, ETA: 0:07:34 2021-08-15 21:55:57.769 | INFO | yolox.core.trainer:after_iter:242 - epoch: 2/10, iter: 70/88, mem: 3881Mb, iter_time: 0.449s, data_time: 0.175s, total_loss: 5.2, iou_loss: 2.2, l1_loss: 0.9, conf_loss: 1.5, cls_loss: 0.6, lr: 1.612e-04, size: 544, ETA: 0:07:20 2021-08-15 21:56:01.607 | INFO | yolox.core.trainer:after_iter:242 - epoch: 2/10, iter: 80/88, mem: 3881Mb, iter_time: 0.383s, data_time: 0.136s, total_loss: 3.3, iou_loss: 1.3, l1_loss: 0.5, conf_loss: 1.0, cls_loss: 0.4, lr: 1.822e-04, size: 512, ETA: 0:07:04 2021-08-15 21:56:04.585 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 21:56:10.799 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process... 2021-08-15 21:56:10.809 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results... 2021-08-15 21:56:10.818 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.01s) 2021-08-15 21:56:10.819 | INFO | pycocotools.coco:loadRes:365 - creating index... 2021-08-15 21:56:10.819 | INFO | pycocotools.coco:loadRes:365 - index created! 2021-08-15 21:56:10.856 | INFO | yolox.core.trainer:evaluate_and_save_model:315 - Average forward time: 6.30 ms, Average NMS time: 1.09 ms, Average inference time: 7.39 ms Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000

    2021-08-15 21:56:10.856 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 21:56:11.022 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch3 2021-08-15 21:56:11.023 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now! 2021-08-15 21:56:11.023 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now! 2021-08-15 21:56:16.385 | INFO | yolox.core.trainer:after_iter:242 - epoch: 3/10, iter: 10/88, mem: 3881Mb, iter_time: 0.536s, data_time: 0.226s, total_loss: 7.6, iou_loss: 2.2, l1_loss: 1.1, conf_loss: 3.6, cls_loss: 0.7, lr: 2.234e-04, size: 800, ETA: 0:06:44 2021-08-15 21:56:21.538 | INFO | yolox.core.trainer:after_iter:242 - epoch: 3/10, iter: 20/88, mem: 3881Mb, iter_time: 0.514s, data_time: 0.203s, total_loss: 5.3, iou_loss: 2.3, l1_loss: 1.0, conf_loss: 1.4, cls_loss: 0.6, lr: 2.480e-04, size: 576, ETA: 0:06:36 2021-08-15 21:56:26.631 | INFO | yolox.core.trainer:after_iter:242 - epoch: 3/10, iter: 30/88, mem: 3881Mb, iter_time: 0.509s, data_time: 0.218s, total_loss: 6.6, iou_loss: 2.5, l1_loss: 1.5, conf_loss: 1.9, cls_loss: 0.7, lr: 2.740e-04, size: 736, ETA: 0:06:28 2021-08-15 21:56:31.465 | INFO | yolox.core.trainer:after_iter:242 - epoch: 3/10, iter: 40/88, mem: 3881Mb, iter_time: 0.483s, data_time: 0.191s, total_loss: 5.9, iou_loss: 2.5, l1_loss: 1.0, conf_loss: 1.7, cls_loss: 0.8, lr: 3.012e-04, size: 544, ETA: 0:06:19 2021-08-15 21:56:35.555 | INFO | yolox.core.trainer:after_iter:242 - epoch: 3/10, iter: 50/88, mem: 3881Mb, iter_time: 0.408s, data_time: 0.150s, total_loss: 3.5, iou_loss: 1.5, l1_loss: 0.5, conf_loss: 1.1, cls_loss: 0.5, lr: 3.298e-04, size: 544, ETA: 0:06:09 2021-08-15 21:56:40.253 | INFO | yolox.core.trainer:after_iter:242 - epoch: 3/10, iter: 60/88, mem: 3881Mb, iter_time: 0.469s, data_time: 0.191s, total_loss: 4.6, iou_loss: 2.1, l1_loss: 1.0, conf_loss: 0.8, cls_loss: 0.7, lr: 3.596e-04, size: 640, ETA: 0:06:01 2021-08-15 21:56:44.927 | INFO | yolox.core.trainer:after_iter:242 - epoch: 3/10, iter: 70/88, mem: 3881Mb, iter_time: 0.467s, data_time: 0.189s, total_loss: 3.2, iou_loss: 1.6, l1_loss: 0.6, conf_loss: 0.4, cls_loss: 0.5, lr: 3.907e-04, size: 576, ETA: 0:05:53 2021-08-15 21:56:49.526 | INFO | yolox.core.trainer:after_iter:242 - epoch: 3/10, iter: 80/88, mem: 3881Mb, iter_time: 0.459s, data_time: 0.126s, total_loss: 9.3, iou_loss: 3.6, l1_loss: 2.1, conf_loss: 2.8, cls_loss: 0.8, lr: 4.231e-04, size: 448, ETA: 0:05:45 2021-08-15 21:56:52.664 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 21:56:58.751 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process... 2021-08-15 21:56:58.770 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results... 2021-08-15 21:56:58.779 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.01s) 2021-08-15 21:56:58.779 | INFO | pycocotools.coco:loadRes:365 - creating index... 2021-08-15 21:56:58.780 | INFO | pycocotools.coco:loadRes:365 - index created! 2021-08-15 21:56:58.851 | INFO | yolox.core.trainer:evaluate_and_save_model:315 - Average forward time: 6.29 ms, Average NMS time: 1.10 ms, Average inference time: 7.39 ms Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000

    2021-08-15 21:56:58.852 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 21:56:59.009 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch4 2021-08-15 21:56:59.010 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now! 2021-08-15 21:56:59.010 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now! 2021-08-15 21:57:03.834 | INFO | yolox.core.trainer:after_iter:242 - epoch: 4/10, iter: 10/88, mem: 3881Mb, iter_time: 0.482s, data_time: 0.194s, total_loss: 3.5, iou_loss: 1.5, l1_loss: 0.6, conf_loss: 0.9, cls_loss: 0.5, lr: 4.847e-04, size: 640, ETA: 0:05:30 2021-08-15 21:57:08.106 | INFO | yolox.core.trainer:after_iter:242 - epoch: 4/10, iter: 20/88, mem: 3881Mb, iter_time: 0.427s, data_time: 0.159s, total_loss: 11.3, iou_loss: 4.4, l1_loss: 3.9, conf_loss: 2.2, cls_loss: 0.8, lr: 5.208e-04, size: 448, ETA: 0:05:22 2021-08-15 21:57:12.441 | INFO | yolox.core.trainer:after_iter:242 - epoch: 4/10, iter: 30/88, mem: 3881Mb, iter_time: 0.433s, data_time: 0.108s, total_loss: 5.2, iou_loss: 2.3, l1_loss: 0.9, conf_loss: 1.5, cls_loss: 0.6, lr: 5.581e-04, size: 480, ETA: 0:05:15 2021-08-15 21:57:16.038 | INFO | yolox.core.trainer:after_iter:242 - epoch: 4/10, iter: 40/88, mem: 3881Mb, iter_time: 0.359s, data_time: 0.125s, total_loss: 4.3, iou_loss: 2.0, l1_loss: 0.8, conf_loss: 0.8, cls_loss: 0.7, lr: 5.967e-04, size: 544, ETA: 0:05:06 2021-08-15 21:57:19.877 | INFO | yolox.core.trainer:after_iter:242 - epoch: 4/10, iter: 50/88, mem: 3881Mb, iter_time: 0.384s, data_time: 0.136s, total_loss: 2.7, iou_loss: 1.3, l1_loss: 0.4, conf_loss: 0.6, cls_loss: 0.4, lr: 6.366e-04, size: 512, ETA: 0:04:58 2021-08-15 21:57:24.603 | INFO | yolox.core.trainer:after_iter:242 - epoch: 4/10, iter: 60/88, mem: 3881Mb, iter_time: 0.472s, data_time: 0.196s, total_loss: 11.9, iou_loss: 3.5, l1_loss: 2.2, conf_loss: 5.3, cls_loss: 0.9, lr: 6.778e-04, size: 800, ETA: 0:04:52 2021-08-15 21:57:30.386 | INFO | yolox.core.trainer:after_iter:242 - epoch: 4/10, iter: 70/88, mem: 3881Mb, iter_time: 0.578s, data_time: 0.243s, total_loss: 7.8, iou_loss: 2.7, l1_loss: 1.4, conf_loss: 3.1, cls_loss: 0.7, lr: 7.203e-04, size: 576, ETA: 0:04:47 2021-08-15 21:57:34.968 | INFO | yolox.core.trainer:after_iter:242 - epoch: 4/10, iter: 80/88, mem: 3881Mb, iter_time: 0.457s, data_time: 0.187s, total_loss: 5.8, iou_loss: 2.3, l1_loss: 1.2, conf_loss: 1.8, cls_loss: 0.6, lr: 7.640e-04, size: 704, ETA: 0:04:41 2021-08-15 21:57:38.888 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 21:57:45.180 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process... 2021-08-15 21:57:45.223 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results... 2021-08-15 21:57:45.241 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.02s) 2021-08-15 21:57:45.241 | INFO | pycocotools.coco:loadRes:365 - creating index... 2021-08-15 21:57:45.242 | INFO | pycocotools.coco:loadRes:365 - index created! 2021-08-15 21:57:45.331 | INFO | yolox.core.trainer:evaluate_and_save_model:315 - Average forward time: 6.29 ms, Average NMS time: 1.14 ms, Average inference time: 7.43 ms Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000

    2021-08-15 21:57:45.332 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 21:57:45.498 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch5 2021-08-15 21:57:45.498 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now! 2021-08-15 21:57:45.498 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now! 2021-08-15 21:57:50.643 | INFO | yolox.core.trainer:after_iter:242 - epoch: 5/10, iter: 10/88, mem: 3881Mb, iter_time: 0.513s, data_time: 0.117s, total_loss: 12.8, iou_loss: 3.9, l1_loss: 2.5, conf_loss: 5.6, cls_loss: 0.8, lr: 8.461e-04, size: 608, ETA: 0:04:31 2021-08-15 21:57:58.209 | INFO | yolox.core.trainer:after_iter:242 - epoch: 5/10, iter: 20/88, mem: 3881Mb, iter_time: 0.756s, data_time: 0.216s, total_loss: 16.1, iou_loss: 4.5, l1_loss: 4.9, conf_loss: 5.5, cls_loss: 1.2, lr: 8.935e-04, size: 832, ETA: 0:04:29 2021-08-15 21:58:04.978 | INFO | yolox.core.trainer:after_iter:242 - epoch: 5/10, iter: 30/88, mem: 3881Mb, iter_time: 0.676s, data_time: 0.296s, total_loss: 20.1, iou_loss: 4.8, l1_loss: 5.6, conf_loss: 8.5, cls_loss: 1.2, lr: 9.422e-04, size: 448, ETA: 0:04:25 2021-08-15 21:58:08.970 | INFO | yolox.core.trainer:after_iter:242 - epoch: 5/10, iter: 40/88, mem: 3881Mb, iter_time: 0.398s, data_time: 0.132s, total_loss: 8.5, iou_loss: 3.6, l1_loss: 2.0, conf_loss: 2.1, cls_loss: 0.8, lr: 9.921e-04, size: 544, ETA: 0:04:18 2021-08-15 21:58:13.747 | INFO | yolox.core.trainer:after_iter:242 - epoch: 5/10, iter: 50/88, mem: 3881Mb, iter_time: 0.477s, data_time: 0.198s, total_loss: 18.3, iou_loss: 4.0, l1_loss: 2.4, conf_loss: 10.6, cls_loss: 1.3, lr: 1.043e-03, size: 832, ETA: 0:04:12 2021-08-15 21:58:20.429 | INFO | yolox.core.trainer:after_iter:242 - epoch: 5/10, iter: 60/88, mem: 3881Mb, iter_time: 0.667s, data_time: 0.292s, total_loss: 11.5, iou_loss: 4.4, l1_loss: 2.9, conf_loss: 3.1, cls_loss: 1.1, lr: 1.096e-03, size: 544, ETA: 0:04:09 2021-08-15 21:58:24.532 | INFO | yolox.core.trainer:after_iter:242 - epoch: 5/10, iter: 70/88, mem: 3881Mb, iter_time: 0.410s, data_time: 0.155s, total_loss: 7.2, iou_loss: 3.2, l1_loss: 1.0, conf_loss: 2.1, cls_loss: 0.7, lr: 1.150e-03, size: 608, ETA: 0:04:02 2021-08-15 21:58:28.869 | INFO | yolox.core.trainer:after_iter:242 - epoch: 5/10, iter: 80/88, mem: 3881Mb, iter_time: 0.433s, data_time: 0.164s, total_loss: 11.0, iou_loss: 4.2, l1_loss: 1.8, conf_loss: 4.1, cls_loss: 1.0, lr: 1.205e-03, size: 480, ETA: 0:03:56 2021-08-15 21:58:31.620 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 21:58:38.010 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process... 2021-08-15 21:58:38.093 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results... 2021-08-15 21:58:38.158 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.06s) 2021-08-15 21:58:38.158 | INFO | pycocotools.coco:loadRes:365 - creating index... 2021-08-15 21:58:38.160 | INFO | pycocotools.coco:loadRes:365 - index created! 2021-08-15 21:58:38.224 | INFO | yolox.core.trainer:evaluate_and_save_model:315 - Average forward time: 6.54 ms, Average NMS time: 1.14 ms, Average inference time: 7.68 ms Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000

    2021-08-15 21:58:38.225 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 21:58:38.376 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch6 2021-08-15 21:58:38.376 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now! 2021-08-15 21:58:38.377 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now! 2021-08-15 21:58:44.452 | INFO | yolox.core.trainer:after_iter:242 - epoch: 6/10, iter: 10/88, mem: 3881Mb, iter_time: 0.607s, data_time: 0.277s, total_loss: 10.6, iou_loss: 4.4, l1_loss: 2.5, conf_loss: 3.0, cls_loss: 0.7, lr: 6.250e-05, size: 768, ETA: 0:03:46 2021-08-15 21:58:47.853 | INFO | yolox.core.trainer:after_iter:242 - epoch: 6/10, iter: 20/88, mem: 3881Mb, iter_time: 0.340s, data_time: 0.101s, total_loss: 5.3, iou_loss: 2.6, l1_loss: 0.6, conf_loss: 1.4, cls_loss: 0.7, lr: 6.250e-05, size: 448, ETA: 0:03:39 2021-08-15 21:58:54.795 | INFO | yolox.core.trainer:after_iter:242 - epoch: 6/10, iter: 30/88, mem: 3881Mb, iter_time: 0.693s, data_time: 0.325s, total_loss: 12.1, iou_loss: 4.3, l1_loss: 2.6, conf_loss: 4.5, cls_loss: 0.7, lr: 6.250e-05, size: 832, ETA: 0:03:35 2021-08-15 21:58:58.460 | INFO | yolox.core.trainer:after_iter:242 - epoch: 6/10, iter: 40/88, mem: 3881Mb, iter_time: 0.366s, data_time: 0.117s, total_loss: 5.1, iou_loss: 2.0, l1_loss: 0.4, conf_loss: 2.1, cls_loss: 0.6, lr: 6.250e-05, size: 480, ETA: 0:03:28 2021-08-15 21:59:04.487 | INFO | yolox.core.trainer:after_iter:242 - epoch: 6/10, iter: 50/88, mem: 3881Mb, iter_time: 0.602s, data_time: 0.278s, total_loss: 9.1, iou_loss: 3.9, l1_loss: 1.8, conf_loss: 2.7, cls_loss: 0.7, lr: 6.250e-05, size: 768, ETA: 0:03:24 2021-08-15 21:59:10.483 | INFO | yolox.core.trainer:after_iter:242 - epoch: 6/10, iter: 60/88, mem: 3881Mb, iter_time: 0.599s, data_time: 0.269s, total_loss: 8.2, iou_loss: 3.2, l1_loss: 1.3, conf_loss: 3.0, cls_loss: 0.7, lr: 6.250e-05, size: 768, ETA: 0:03:19 2021-08-15 21:59:15.368 | INFO | yolox.core.trainer:after_iter:242 - epoch: 6/10, iter: 70/88, mem: 3881Mb, iter_time: 0.488s, data_time: 0.196s, total_loss: 4.9, iou_loss: 2.3, l1_loss: 0.6, conf_loss: 1.4, cls_loss: 0.6, lr: 6.250e-05, size: 640, ETA: 0:03:14 2021-08-15 21:59:21.506 | INFO | yolox.core.trainer:after_iter:242 - epoch: 6/10, iter: 80/88, mem: 3881Mb, iter_time: 0.613s, data_time: 0.283s, total_loss: 5.8, iou_loss: 2.4, l1_loss: 0.8, conf_loss: 2.0, cls_loss: 0.6, lr: 6.250e-05, size: 736, ETA: 0:03:09 2021-08-15 21:59:26.364 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 21:59:33.032 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process... 2021-08-15 21:59:33.053 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results... 2021-08-15 21:59:33.080 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.03s) 2021-08-15 21:59:33.080 | INFO | pycocotools.coco:loadRes:365 - creating index... 2021-08-15 21:59:33.081 | INFO | pycocotools.coco:loadRes:365 - index created! 2021-08-15 21:59:33.134 | INFO | yolox.core.trainer:evaluate_and_save_model:315 - Average forward time: 6.32 ms, Average NMS time: 1.17 ms, Average inference time: 7.49 ms Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000

    2021-08-15 21:59:33.134 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 21:59:33.312 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch7 2021-08-15 21:59:33.313 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now! 2021-08-15 21:59:33.313 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now! 2021-08-15 21:59:38.130 | INFO | yolox.core.trainer:after_iter:242 - epoch: 7/10, iter: 10/88, mem: 3881Mb, iter_time: 0.481s, data_time: 0.192s, total_loss: 6.9, iou_loss: 3.5, l1_loss: 1.4, conf_loss: 1.3, cls_loss: 0.8, lr: 6.250e-05, size: 576, ETA: 0:03:00 2021-08-15 21:59:43.472 | INFO | yolox.core.trainer:after_iter:242 - epoch: 7/10, iter: 20/88, mem: 3881Mb, iter_time: 0.533s, data_time: 0.231s, total_loss: 4.0, iou_loss: 1.7, l1_loss: 0.5, conf_loss: 1.2, cls_loss: 0.6, lr: 6.250e-05, size: 704, ETA: 0:02:54 2021-08-15 21:59:48.087 | INFO | yolox.core.trainer:after_iter:242 - epoch: 7/10, iter: 30/88, mem: 3881Mb, iter_time: 0.461s, data_time: 0.181s, total_loss: 4.7, iou_loss: 2.4, l1_loss: 0.7, conf_loss: 1.1, cls_loss: 0.6, lr: 6.250e-05, size: 576, ETA: 0:02:49 2021-08-15 21:59:53.363 | INFO | yolox.core.trainer:after_iter:242 - epoch: 7/10, iter: 40/88, mem: 3881Mb, iter_time: 0.527s, data_time: 0.228s, total_loss: 5.8, iou_loss: 2.7, l1_loss: 0.9, conf_loss: 1.6, cls_loss: 0.6, lr: 6.250e-05, size: 736, ETA: 0:02:44 2021-08-15 21:59:58.929 | INFO | yolox.core.trainer:after_iter:242 - epoch: 7/10, iter: 50/88, mem: 3881Mb, iter_time: 0.556s, data_time: 0.244s, total_loss: 4.1, iou_loss: 1.7, l1_loss: 0.5, conf_loss: 1.3, cls_loss: 0.5, lr: 6.250e-05, size: 736, ETA: 0:02:38 2021-08-15 22:00:05.210 | INFO | yolox.core.trainer:after_iter:242 - epoch: 7/10, iter: 60/88, mem: 3881Mb, iter_time: 0.628s, data_time: 0.278s, total_loss: 3.8, iou_loss: 1.6, l1_loss: 0.5, conf_loss: 1.3, cls_loss: 0.5, lr: 6.250e-05, size: 800, ETA: 0:02:34 2021-08-15 22:00:09.728 | INFO | yolox.core.trainer:after_iter:242 - epoch: 7/10, iter: 70/88, mem: 3881Mb, iter_time: 0.451s, data_time: 0.167s, total_loss: 8.5, iou_loss: 3.8, l1_loss: 1.8, conf_loss: 2.0, cls_loss: 0.8, lr: 6.250e-05, size: 544, ETA: 0:02:28 2021-08-15 22:00:14.975 | INFO | yolox.core.trainer:after_iter:242 - epoch: 7/10, iter: 80/88, mem: 3881Mb, iter_time: 0.524s, data_time: 0.225s, total_loss: 3.0, iou_loss: 1.1, l1_loss: 0.3, conf_loss: 1.0, cls_loss: 0.6, lr: 6.250e-05, size: 736, ETA: 0:02:23 2021-08-15 22:00:19.952 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 22:00:25.995 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process... 2021-08-15 22:00:26.010 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results... 2021-08-15 22:00:26.018 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.01s) 2021-08-15 22:00:26.018 | INFO | pycocotools.coco:loadRes:365 - creating index... 2021-08-15 22:00:26.019 | INFO | pycocotools.coco:loadRes:365 - index created! 2021-08-15 22:00:26.058 | INFO | yolox.core.trainer:evaluate_and_save_model:315 - Average forward time: 6.28 ms, Average NMS time: 1.08 ms, Average inference time: 7.36 ms Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000

    2021-08-15 22:00:26.058 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 22:00:26.221 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch8 2021-08-15 22:00:26.221 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now! 2021-08-15 22:00:26.222 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now! 2021-08-15 22:00:31.045 | INFO | yolox.core.trainer:after_iter:242 - epoch: 8/10, iter: 10/88, mem: 3881Mb, iter_time: 0.482s, data_time: 0.183s, total_loss: 10.0, iou_loss: 3.8, l1_loss: 2.1, conf_loss: 3.2, cls_loss: 0.9, lr: 6.250e-05, size: 512, ETA: 0:02:13 2021-08-15 22:00:35.180 | INFO | yolox.core.trainer:after_iter:242 - epoch: 8/10, iter: 20/88, mem: 3881Mb, iter_time: 0.413s, data_time: 0.155s, total_loss: 5.6, iou_loss: 2.6, l1_loss: 1.0, conf_loss: 1.4, cls_loss: 0.7, lr: 6.250e-05, size: 640, ETA: 0:02:08 2021-08-15 22:00:39.925 | INFO | yolox.core.trainer:after_iter:242 - epoch: 8/10, iter: 30/88, mem: 3881Mb, iter_time: 0.474s, data_time: 0.191s, total_loss: 3.9, iou_loss: 1.8, l1_loss: 0.5, conf_loss: 1.0, cls_loss: 0.6, lr: 6.250e-05, size: 672, ETA: 0:02:02 2021-08-15 22:00:44.020 | INFO | yolox.core.trainer:after_iter:242 - epoch: 8/10, iter: 40/88, mem: 3881Mb, iter_time: 0.409s, data_time: 0.150s, total_loss: 6.4, iou_loss: 3.3, l1_loss: 1.2, conf_loss: 1.1, cls_loss: 0.8, lr: 6.250e-05, size: 512, ETA: 0:01:57 2021-08-15 22:00:48.270 | INFO | yolox.core.trainer:after_iter:242 - epoch: 8/10, iter: 50/88, mem: 3881Mb, iter_time: 0.424s, data_time: 0.167s, total_loss: 4.1, iou_loss: 2.0, l1_loss: 0.6, conf_loss: 1.0, cls_loss: 0.6, lr: 6.250e-05, size: 672, ETA: 0:01:51 2021-08-15 22:00:52.262 | INFO | yolox.core.trainer:after_iter:242 - epoch: 8/10, iter: 60/88, mem: 3881Mb, iter_time: 0.398s, data_time: 0.140s, total_loss: 8.9, iou_loss: 3.9, l1_loss: 1.8, conf_loss: 2.4, cls_loss: 0.9, lr: 6.250e-05, size: 448, ETA: 0:01:45 2021-08-15 22:00:57.304 | INFO | yolox.core.trainer:after_iter:242 - epoch: 8/10, iter: 70/88, mem: 3881Mb, iter_time: 0.504s, data_time: 0.216s, total_loss: 5.0, iou_loss: 2.3, l1_loss: 0.8, conf_loss: 1.3, cls_loss: 0.7, lr: 6.250e-05, size: 768, ETA: 0:01:40 2021-08-15 22:01:03.148 | INFO | yolox.core.trainer:after_iter:242 - epoch: 8/10, iter: 80/88, mem: 3881Mb, iter_time: 0.584s, data_time: 0.259s, total_loss: 2.8, iou_loss: 1.1, l1_loss: 0.3, conf_loss: 0.9, cls_loss: 0.5, lr: 6.250e-05, size: 736, ETA: 0:01:35 2021-08-15 22:01:07.368 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 22:01:13.748 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process... 2021-08-15 22:01:13.761 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results... 2021-08-15 22:01:13.771 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.01s) 2021-08-15 22:01:13.771 | INFO | pycocotools.coco:loadRes:365 - creating index... 2021-08-15 22:01:13.772 | INFO | pycocotools.coco:loadRes:365 - index created! 2021-08-15 22:01:13.809 | INFO | yolox.core.trainer:evaluate_and_save_model:315 - Average forward time: 6.27 ms, Average NMS time: 1.13 ms, Average inference time: 7.40 ms Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000

    2021-08-15 22:01:13.810 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 22:01:13.969 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch9 2021-08-15 22:01:13.969 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now! 2021-08-15 22:01:13.969 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now! 2021-08-15 22:01:19.724 | INFO | yolox.core.trainer:after_iter:242 - epoch: 9/10, iter: 10/88, mem: 3881Mb, iter_time: 0.575s, data_time: 0.261s, total_loss: 5.1, iou_loss: 2.2, l1_loss: 0.7, conf_loss: 1.5, cls_loss: 0.6, lr: 6.250e-05, size: 768, ETA: 0:01:26 2021-08-15 22:01:25.460 | INFO | yolox.core.trainer:after_iter:242 - epoch: 9/10, iter: 20/88, mem: 3881Mb, iter_time: 0.573s, data_time: 0.249s, total_loss: 5.0, iou_loss: 2.4, l1_loss: 0.8, conf_loss: 1.1, cls_loss: 0.7, lr: 6.250e-05, size: 640, ETA: 0:01:21 2021-08-15 22:01:30.151 | INFO | yolox.core.trainer:after_iter:242 - epoch: 9/10, iter: 30/88, mem: 3881Mb, iter_time: 0.469s, data_time: 0.185s, total_loss: 4.9, iou_loss: 2.4, l1_loss: 0.7, conf_loss: 1.1, cls_loss: 0.6, lr: 6.250e-05, size: 544, ETA: 0:01:16 2021-08-15 22:01:33.860 | INFO | yolox.core.trainer:after_iter:242 - epoch: 9/10, iter: 40/88, mem: 3881Mb, iter_time: 0.370s, data_time: 0.127s, total_loss: 5.9, iou_loss: 2.6, l1_loss: 0.7, conf_loss: 2.0, cls_loss: 0.6, lr: 6.250e-05, size: 480, ETA: 0:01:10 2021-08-15 22:01:38.131 | INFO | yolox.core.trainer:after_iter:242 - epoch: 9/10, iter: 50/88, mem: 3881Mb, iter_time: 0.427s, data_time: 0.167s, total_loss: 8.6, iou_loss: 3.4, l1_loss: 1.6, conf_loss: 2.9, cls_loss: 0.8, lr: 6.250e-05, size: 768, ETA: 0:01:05 2021-08-15 22:01:43.483 | INFO | yolox.core.trainer:after_iter:242 - epoch: 9/10, iter: 60/88, mem: 3881Mb, iter_time: 0.534s, data_time: 0.224s, total_loss: 4.4, iou_loss: 2.3, l1_loss: 0.5, conf_loss: 0.9, cls_loss: 0.6, lr: 6.250e-05, size: 576, ETA: 0:01:00 2021-08-15 22:01:48.007 | INFO | yolox.core.trainer:after_iter:242 - epoch: 9/10, iter: 70/88, mem: 3881Mb, iter_time: 0.452s, data_time: 0.178s, total_loss: 3.8, iou_loss: 1.8, l1_loss: 0.5, conf_loss: 1.0, cls_loss: 0.6, lr: 6.250e-05, size: 672, ETA: 0:00:54 2021-08-15 22:01:52.385 | INFO | yolox.core.trainer:after_iter:242 - epoch: 9/10, iter: 80/88, mem: 3881Mb, iter_time: 0.437s, data_time: 0.165s, total_loss: 8.9, iou_loss: 3.7, l1_loss: 1.6, conf_loss: 2.7, cls_loss: 1.0, lr: 6.250e-05, size: 448, ETA: 0:00:49 2021-08-15 22:01:55.374 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 22:02:01.640 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process... 2021-08-15 22:02:01.653 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results... 2021-08-15 22:02:01.660 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.01s) 2021-08-15 22:02:01.661 | INFO | pycocotools.coco:loadRes:365 - creating index... 2021-08-15 22:02:01.661 | INFO | pycocotools.coco:loadRes:365 - index created! 2021-08-15 22:02:01.701 | INFO | yolox.core.trainer:evaluate_and_save_model:315 - Average forward time: 6.29 ms, Average NMS time: 1.07 ms, Average inference time: 7.36 ms Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000

    2021-08-15 22:02:01.701 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 22:02:01.865 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch10 2021-08-15 22:02:01.866 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now! 2021-08-15 22:02:01.866 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now! 2021-08-15 22:02:06.901 | INFO | yolox.core.trainer:after_iter:242 - epoch: 10/10, iter: 10/88, mem: 3881Mb, iter_time: 0.503s, data_time: 0.206s, total_loss: 3.8, iou_loss: 1.9, l1_loss: 0.5, conf_loss: 0.8, cls_loss: 0.5, lr: 6.250e-05, size: 608, ETA: 0:00:40 2021-08-15 22:02:11.762 | INFO | yolox.core.trainer:after_iter:242 - epoch: 10/10, iter: 20/88, mem: 3881Mb, iter_time: 0.486s, data_time: 0.204s, total_loss: 6.7, iou_loss: 3.0, l1_loss: 1.2, conf_loss: 1.7, cls_loss: 0.8, lr: 6.250e-05, size: 768, ETA: 0:00:34 2021-08-15 22:02:17.996 | INFO | yolox.core.trainer:after_iter:242 - epoch: 10/10, iter: 30/88, mem: 3881Mb, iter_time: 0.623s, data_time: 0.285s, total_loss: 7.2, iou_loss: 3.4, l1_loss: 1.5, conf_loss: 1.5, cls_loss: 0.8, lr: 6.250e-05, size: 832, ETA: 0:00:29 2021-08-15 22:02:24.433 | INFO | yolox.core.trainer:after_iter:242 - epoch: 10/10, iter: 40/88, mem: 3881Mb, iter_time: 0.643s, data_time: 0.276s, total_loss: 6.7, iou_loss: 3.4, l1_loss: 1.4, conf_loss: 1.2, cls_loss: 0.7, lr: 6.250e-05, size: 576, ETA: 0:00:24 2021-08-15 22:02:28.987 | INFO | yolox.core.trainer:after_iter:242 - epoch: 10/10, iter: 50/88, mem: 3881Mb, iter_time: 0.455s, data_time: 0.186s, total_loss: 4.9, iou_loss: 2.3, l1_loss: 0.8, conf_loss: 1.1, cls_loss: 0.6, lr: 6.250e-05, size: 832, ETA: 0:00:19 2021-08-15 22:02:35.567 | INFO | yolox.core.trainer:after_iter:242 - epoch: 10/10, iter: 60/88, mem: 3881Mb, iter_time: 0.658s, data_time: 0.286s, total_loss: 4.9, iou_loss: 2.4, l1_loss: 0.8, conf_loss: 1.1, cls_loss: 0.6, lr: 6.250e-05, size: 640, ETA: 0:00:14 2021-08-15 22:02:40.259 | INFO | yolox.core.trainer:after_iter:242 - epoch: 10/10, iter: 70/88, mem: 3881Mb, iter_time: 0.469s, data_time: 0.189s, total_loss: 3.3, iou_loss: 1.5, l1_loss: 0.4, conf_loss: 0.9, cls_loss: 0.5, lr: 6.250e-05, size: 640, ETA: 0:00:09 2021-08-15 22:02:45.042 | INFO | yolox.core.trainer:after_iter:242 - epoch: 10/10, iter: 80/88, mem: 3881Mb, iter_time: 0.478s, data_time: 0.196s, total_loss: 3.7, iou_loss: 1.9, l1_loss: 0.6, conf_loss: 0.6, cls_loss: 0.5, lr: 6.250e-05, size: 704, ETA: 0:00:04 2021-08-15 22:02:49.305 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 22:02:55.436 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process... 2021-08-15 22:02:55.449 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results... 2021-08-15 22:02:55.457 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.01s) 2021-08-15 22:02:55.457 | INFO | pycocotools.coco:loadRes:365 - creating index... 2021-08-15 22:02:55.458 | INFO | pycocotools.coco:loadRes:365 - index created! 2021-08-15 22:02:55.498 | INFO | yolox.core.trainer:evaluate_and_save_model:315 - Average forward time: 6.26 ms, Average NMS time: 1.10 ms, Average inference time: 7.36 ms Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000

    2021-08-15 22:02:55.499 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606 2021-08-15 22:02:55.667 | INFO | yolox.core.trainer:after_train:187 - Training of experiment is done and the best AP is 0.00

    As you can see I only train for 10 epochs just for testing but the mAP is 0.00 and I get the same result even when I train for 300 epochs,and this is my own Exp file: `#!/usr/bin/env python3

    -- coding:utf-8 --

    Copyright (c) Megvii, Inc. and its affiliates.

    import os

    from yolox.exp import Exp as MyExp

    class Exp(MyExp): def init(self): super(Exp, self).init() self.depth = 0.33 self.width = 0.50 self.exp_name = os.path.split(os.path.realpath(file))[1].split(".")[0]

        # Define yourself dataset path
        self.data_dir = "datasets/coco128"
        self.train_ann = "instances_train2017.json"
        self.val_ann = "instances_val2017.json"
    
        self.num_classes = 8
    
        self.max_epoch = 10
        self.data_num_workers = 0
        self.eval_interval = 1`
    

    and the coco_classes.py: `#!/usr/bin/env python3

    -- coding:utf-8 --

    Copyright (c) Megvii, Inc. and its affiliates.

    COCO_CLASSES = ( "blue1", "red1", "blue2", "red2", "blue3", "red3", "blue4", "red4", )` So what's wrong with my code?I have struggled into this a whole day,Honestly,I'm about to be crazy now!!!

    opened by Hezhexi2002 30
  • 请问对算力卡的最低要求是什么?

    请问对算力卡的最低要求是什么?

    gtx1080运行训练demo提示错误如下 2021-07-27 13:21:04 | ERROR | yolox.models.yolo_head:287 - OOM RuntimeError is raised due to the huge memory cost during label assignment. CPU mode is applied in this batch. If you want to avoid this issue, try to reduce the batch size or image size. 2021-07-27 13:21:04 | INFO | yolox.core.trainer:183 - Training of experiment is done and the best AP is 0.00 2021-07-27 13:21:04 | ERROR | yolox.core.launch:68 - An error has been caught in function 'launch', process 'MainProcess' (8953), thread 'MainThread' (139988140537664): ... RuntimeError: CUDA error: device-side assert triggered

    opened by MollyHoo 24
  •  RAM usage continues to grow and the training process stopped without error !!!

    RAM usage continues to grow and the training process stopped without error !!!

    During training, RAM usage continues to grow. Finaily, the training process stopped. It is a bug?

    2021-07-23 14:46:56 | INFO | yolox.core.trainer:237 - epoch: 9/100, iter: 2000/3905, mem: 1730Mb, iter_time: 0.165s, data_time: 0.001s, total_loss: 3.3, iou_loss: 1.7, l1_loss: 0.0, conf_loss: 1.2, cls_loss: 0.5, lr: 9.955e-03, size: 320, ETA: 16:27:19 2021-07-23 14:47:04 | INFO | yolox.core.trainer:237 - epoch: 9/100, iter: 2050/3905, mem: 1730Mb, iter_time: 0.166s, data_time: 0.001s, total_loss: 3.0, iou_loss: 1.8, l1_loss: 0.0, conf_loss: 0.7, cls_loss: 0.5, lr: 9.955e-03, size: 320, ETA: 16:27:11 2021-07-23 14:47:13 | INFO | yolox.core.trainer:237 - epoch: 9/100, iter: 2100/3905, mem: 1730Mb, iter_time: 0.165s, data_time: 0.001s, total_loss: 2.9, iou_loss: 1.8, l1_loss: 0.0, conf_loss: 0.6, cls_loss: 0.5, lr: 9.954e-03, size: 320, ETA: 16:27:02 2021-07-23 14:47:21 | INFO | yolox.core.trainer:237 - epoch: 9/100, iter: 2150/3905, mem: 1730Mb, iter_time: 0.166s, data_time: 0.001s, total_loss: 3.3, iou_loss: 1.9, l1_loss: 0.0, conf_loss: 1.0, cls_loss: 0.5, lr: 9.954e-03, size: 320, ETA: 16:26:54 2021-07-23 14:47:30 | INFO | yolox.core.trainer:237 - epoch: 9/100, iter: 2200/3905, mem: 1730Mb, iter_time: 0.177s, data_time: 0.002s, total_loss: 2.3, iou_loss: 1.3, l1_loss: 0.0, conf_loss: 0.6, cls_loss: 0.4, lr: 9.954e-03, size: 320, ETA: 16:26:51 2021-07-23 14:47:38 | INFO | yolox.core.trainer:237 - epoch: 9/100, iter: 2250/3905, mem: 1730Mb, iter_time: 0.166s, data_time: 0.001s, total_loss: 2.9, iou_loss: 1.7, l1_loss: 0.0, conf_loss: 0.7, cls_loss: 0.5, lr: 9.953e-03, size: 320, ETA: 16:26:43 2021-07-23 14:47:47 | INFO | yolox.core.trainer:237 - epoch: 9/100, iter: 2300/3905, mem: 1730Mb, iter_time: 0.168s, data_time: 0.001s, total_loss: 2.4, iou_loss: 1.5, l1_loss: 0.0, conf_loss: 0.5, cls_loss: 0.4, lr: 9.953e-03, size: 320, ETA: 16:26:36 ------------------------stopped here--------------------

    +-----------------------------------------------------------------------------+ | NVIDIA-SMI 440.33.01 Driver Version: 440.33.01 CUDA Version: 10.2 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 GeForce RTX 208... On | 00000000:3D:00.0 Off | N/A | | 28% 50C P2 109W / 250W | 2050MiB / 11019MiB | 100% Default | +-------------------------------+----------------------+----------------------+ | 1 GeForce RTX 208... On | 00000000:3E:00.0 Off | N/A | | 27% 49C P2 103W / 250W | 2086MiB / 11019MiB | 100% Default | +-------------------------------+----------------------+----------------------+ | 2 GeForce RTX 208... On | 00000000:41:00.0 Off | N/A | | 25% 48C P2 117W / 250W | 2086MiB / 11019MiB | 100% Default | +-------------------------------+----------------------+----------------------+ | 3 GeForce RTX 208... On | 00000000:42:00.0 Off | N/A | | 28% 50C P2 113W / 250W | 2086MiB / 11019MiB | 100% Default | +-------------------------------+----------------------+----------------------+ | 4 GeForce RTX 208... On | 00000000:44:00.0 Off | N/A | | 16% 27C P8 21W / 250W | 11MiB / 11019MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 5 GeForce RTX 208... On | 00000000:45:00.0 Off | N/A | | 28% 50C P2 110W / 250W | 2086MiB / 11019MiB | 100% Default | +-------------------------------+----------------------+----------------------+ | 6 GeForce RTX 208... On | 00000000:46:00.0 Off | N/A | | 24% 47C P2 95W / 250W | 2086MiB / 11019MiB | 100% Default | +-------------------------------+----------------------+----------------------+ | 7 GeForce RTX 208... On | 00000000:47:00.0 Off | N/A | | 26% 49C P2 99W / 250W | 2086MiB / 11019MiB | 100% Default | +-------------------------------+----------------------+----------------------+

    是RAM持续增长,然后溢出,导致程序停止?

    opened by JinYAnGHe 24
  • KeyError: Caught KeyError in DataLoader worker process 0.

    KeyError: Caught KeyError in DataLoader worker process 0.

    when I try to train,run this ''' python3 tools/train.py -f exps/example/yolox_voc/yolox_voc_s.py -d 0 -b 2 --fp16 -c yolox_s.pth ''' it was wrong when there occurs 2021-07-28 19:50:56 | INFO | yolox.core.trainer:245 - epoch: 1/300, iter: 240/405, mem: 2898Mb, iter_time: 0.104s, data_time: 0.000s, total_loss: 4.7, iou_loss: 1.6, l1_loss: 0.0, conf_loss: 2.3, cls_loss: 0.8, lr: 4.390e-06, size: 608, ETA: 7:17:45

    here are the details: 2021-07-28 19:50:55 | INFO | yolox.core.trainer:245 - epoch: 1/300, iter: 230/405, mem: 2898Mb, iter_time: 0.104s, data_time: 0.000s, total_loss: 4.8, iou_loss: 2.0, l1_loss: 0.0, conf_loss: 1.5, cls_loss: 1.3, lr: 4.031e-06, size: 544, ETA: 7:27:43 2021-07-28 19:50:56 | INFO | yolox.core.trainer:245 - epoch: 1/300, iter: 240/405, mem: 2898Mb, iter_time: 0.104s, data_time: 0.000s, total_loss: 4.7, iou_loss: 1.6, l1_loss: 0.0, conf_loss: 2.3, cls_loss: 0.8, lr: 4.390e-06, size: 608, ETA: 7:17:45 2021-07-28 19:50:57 | INFO | yolox.core.trainer:184 - Training of experiment is done and the best AP is 0.00 2021-07-28 19:50:57 | ERROR | yolox.core.launch:68 - An error has been caught in function 'launch', process 'MainProcess' (3173), thread 'MainThread' (140583223760704): Traceback (most recent call last):

    File "tools/train.py", line 115, in dist_url=dist_url, args=(exp, args) │ │ └ Namespace(batch_size=2, ckpt='yolox_s.pth', devices=0, dist_backend='nccl', dist_url=None, exp_file='exps/example/yolox_voc/y... │ └ ╒══════════════════╤═════════════════════════════════════════════════════════════════════════════════════════════════════════... └ 'auto'

    File "/home/yan/YOLOX/yolox/core/launch.py", line 68, in launch main_func(*args) │ └ (╒══════════════════╤════════════════════════════════════════════════════════════════════════════════════════════════════════... └ <function main at 0x7fdb434ab598>

    File "tools/train.py", line 101, in main trainer.train() │ └ <function Trainer.train at 0x7fdb55bb3400> └ <yolox.core.trainer.Trainer object at 0x7fdc11a8fda0>

    File "/home/yan/YOLOX/yolox/core/trainer.py", line 70, in train self.train_in_epoch() │ └ <function Trainer.train_in_epoch at 0x7fdbaa11d620> └ <yolox.core.trainer.Trainer object at 0x7fdc11a8fda0>

    File "/home/yan/YOLOX/yolox/core/trainer.py", line 79, in train_in_epoch self.train_in_iter() │ └ <function Trainer.train_in_iter at 0x7fdbaa1249d8> └ <yolox.core.trainer.Trainer object at 0x7fdc11a8fda0>

    File "/home/yan/YOLOX/yolox/core/trainer.py", line 85, in train_in_iter self.train_one_iter() │ └ <function Trainer.train_one_iter at 0x7fdbaa124a60> └ <yolox.core.trainer.Trainer object at 0x7fdc11a8fda0>

    File "/home/yan/YOLOX/yolox/core/trainer.py", line 91, in train_one_iter inps, targets = self.prefetcher.next() │ │ └ <function DataPrefetcher.next at 0x7fdb480e4b70> │ └ <yolox.data.data_prefetcher.DataPrefetcher object at 0x7fdb390250f0> └ <yolox.core.trainer.Trainer object at 0x7fdc11a8fda0>

    File "/home/yan/YOLOX/yolox/data/data_prefetcher.py", line 48, in next self.preload() │ └ <function DataPrefetcher.preload at 0x7fdb480e46a8> └ <yolox.data.data_prefetcher.DataPrefetcher object at 0x7fdb390250f0>

    File "/home/yan/YOLOX/yolox/data/data_prefetcher.py", line 30, in preload self.next_input, self.next_target, _, _ = next(self.loader) │ │ │ │ │ └ <torch.utils.data.dataloader._MultiProcessingDataLoaderIter object at 0x7fdb55564a20> │ │ │ │ └ <yolox.data.data_prefetcher.DataPrefetcher object at 0x7fdb390250f0> │ │ │ └ tensor([[[0., 0., 0., 0., 0.], │ │ │ [0., 0., 0., 0., 0.], │ │ │ [0., 0., 0., 0., 0.], │ │ │ ..., │ │ │ [0., 0., ... │ │ └ <yolox.data.data_prefetcher.DataPrefetcher object at 0x7fdb390250f0> │ └ tensor([[[[-0.1657, -0.1657, -0.1657, ..., -0.1657, -0.1657, -0.1657], │ [-0.1657, -0.1657, -0.1657, ..., -0.1657, ... └ <yolox.data.data_prefetcher.DataPrefetcher object at 0x7fdb390250f0>

    File "/home/yan/.local/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 521, in next data = self._next_data() │ └ <function _MultiProcessingDataLoaderIter._next_data at 0x7fdb555a5268> └ <torch.utils.data.dataloader._MultiProcessingDataLoaderIter object at 0x7fdb55564a20> File "/home/yan/.local/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 1203, in _next_data return self._process_data(data) │ │ └ <torch._utils.ExceptionWrapper object at 0x7fdb3af557b8> │ └ <function _MultiProcessingDataLoaderIter._process_data at 0x7fdb555a5378> └ <torch.utils.data.dataloader._MultiProcessingDataLoaderIter object at 0x7fdb55564a20> File "/home/yan/.local/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 1229, in _process_data data.reraise() │ └ <function ExceptionWrapper.reraise at 0x7fdc10ccad90> └ <torch._utils.ExceptionWrapper object at 0x7fdb3af557b8> File "/home/yan/.local/lib/python3.6/site-packages/torch/_utils.py", line 425, in reraise raise self.exc_type(msg) │ │ └ Caught KeyError in DataLoader worker process 0. │ │ Original Traceback (most recent call last): │ │ File "/home/yan/.local/lib/pyth... │ └ <class 'KeyError'> └ <torch._utils.ExceptionWrapper object at 0x7fdb3af557b8>

    KeyError: Caught KeyError in DataLoader worker process 0. Original Traceback (most recent call last): File "/home/yan/.local/lib/python3.6/site-packages/torch/utils/data/_utils/worker.py", line 287, in _worker_loop data = fetcher.fetch(index) File "/home/yan/.local/lib/python3.6/site-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "/home/yan/.local/lib/python3.6/site-packages/torch/utils/data/_utils/fetch.py", line 44, in data = [self.dataset[idx] for idx in possibly_batched_index] File "/home/yan/YOLOX/yolox/data/datasets/datasets_wrapper.py", line 121, in wrapper ret_val = getitem_fn(self, index) File "/home/yan/YOLOX/yolox/data/datasets/mosaicdetection.py", line 91, in getitem img, _labels, _, _ = self._dataset.pull_item(index) File "/home/yan/YOLOX/yolox/data/datasets/voc.py", line 145, in pull_item target = self.load_anno(index) File "/home/yan/YOLOX/yolox/data/datasets/voc.py", line 126, in load_anno target = self.target_transform(target) File "/home/yan/YOLOX/yolox/data/datasets/voc.py", line 64, in call label_idx = self.class_to_ind[name] KeyError: 'dw'

    opened by Yan-jiarun 20
  • demo结果有问题

    demo结果有问题

    你好,我直接下载官方提供的yolox-nano模型跑demo程序,测试dog.jpg,发现输出结果稍微有点问题,多了一个目标。调用代码如下: python tools/demo.py image -n yolox-nano -c ./models/yolox_nano.pth.tar --path assets/dog.jpg --conf 0.3 --nms 0.65 --tsize 416 --save_result 显示结果如下图所示: image 我打印输出outputs的结果如下: tensor([[ 71.5272, 116.8364, 172.1584, 295.3528, 0.9587, 0.8872, 16.0000], [ 60.9691, 75.9739, 307.4900, 231.2223, 0.9442, 0.8800, 1.0000], [252.5838, 41.6913, 375.4042, 91.2227, 0.7677, 0.8870, 2.0000], [252.0094, 41.5889, 375.6715, 93.2385, 0.4352, 0.8493, 7.0000]], device='cuda:0') 另外,比较奇怪的是,我把pytorch模型转换成ncnn之后检测结果正常。直接使用的是官方提供的yolox.cpp文件,参数设置和上面相同,检测结果如下图所示: image 16 = 0.84702 at 132.07 215.84 185.92 x 329.64 1 = 0.82856 at 113.21 140.14 454.67 x 286.03 2 = 0.68373 at 466.35 77.03 226.64 x 91.41 非常感谢您的工程!

    opened by deepage 20
  • Whether the epochs is set to 200 or 300,there will be overfitting

    Whether the epochs is set to 200 or 300,there will be overfitting

    image epochs set to 300: when training to about 200 epochs, the map starts to drop. epochs set to 200: when training to about 120 epochs, the map starts to drop. Any suggestions? thx!

    opened by xuezu29 19
  • How to improve accuracy of detecting small objects?

    How to improve accuracy of detecting small objects?

    I trained yolox_L model for 100 epochs, the detection for big objects is good but is bad for small objects. The confidence for small targets is too low that cannot show the bounding box with a normal conf and nms value. Could anyone provide idea on how to improve it? Thanks a lot

    High Priority 
    opened by PhoenyHan 18
  • trainning AP is always 0.000

    trainning AP is always 0.000

    I have pulled the latest code. image training command is: 'python3 tools/train.py -f exps/default/yolox_l.py -d 1 -b 8 --fp16 -o -c yolox/weights/yolox_l.pth.tar'

    opened by xiel11 18
  • AP=0

    AP=0

    2021-08-05 19:03:18.410 | INFO | yolox.core.trainer:before_epoch:193 - ---> start train epoch300 2021-08-05 19:03:21.105 | INFO | yolox.core.trainer:after_iter:246 - epoch: 300/300, iter: 10/27, mem: 10161Mb, iter_time: 0.269s, data_time: 0.002s, total_loss: 5.5, iou_loss: 1.9, l1_loss: 0.8, conf_loss: 2.0, cls_loss: 0.8, lr: 6.250e-05, size: 672, ETA: 0:00:05 2021-08-05 19:03:24.223 | INFO | yolox.core.trainer:after_iter:246 - epoch: 300/300, iter: 20/27, mem: 10161Mb, iter_time: 0.311s, data_time: 0.001s, total_loss: 6.2, iou_loss: 2.3, l1_loss: 1.0, conf_loss: 2.2, cls_loss: 0.8, lr: 6.250e-05, size: 576, ETA: 0:00:02 2021-08-05 19:03:26.326 | INFO | yolox.core.trainer:save_ckpt:322 - Save weights to ./YOLOX_outputs/yolox_voc_s 2021-08-05 19:03:27.583 | INFO | yolox.evaluators.voc_evaluator:evaluate_prediction:161 - Evaluate in main process... 2021-08-05 19:03:28.087 | INFO | yolox.core.trainer:evaluate_and_save_model:313 - Average forward time: 10.16 ms, Average NMS time: 0.79 ms, Average inference time: 10.96 ms

    2021-08-05 19:03:28.087 | INFO | yolox.core.trainer:save_ckpt:322 - Save weights to ./YOLOX_outputs/yolox_voc_s 2021-08-05 19:03:28.344 | INFO | yolox.core.trainer:after_train:186 - Training of experiment is done and the best AP is 0.00

    opened by Michael-YYang 17
  • 我安装YOLOX出现了这样的问题,是什么原因呢?

    我安装YOLOX出现了这样的问题,是什么原因呢?

    WARNING: Discarding file:///D:/LH/code/YOLOX-main. Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output. ERROR: Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output. image

    opened by lihui669 17
  • demo的video无法跑出结果

    demo的video无法跑出结果

    image有保存的dog结果 但是video的结果为空白

    ~/dev/YOLOX$ python3 tools/demo.py video -n yolox-s -c pretrained_models/yolox_s.pth.tar --path /assets/ch14_0616-0625.mp4 --conf 0.3 --nms 0.65 --tsize 640 --save_result 2021-07-22 14:34:23 | INFO | main:219 - Args: Namespace(camid=0, ckpt='pretrained_models/yolox_s.pth.tar', conf=0.3, demo='video', exp_file=None, experiment_name='yolox_s', fp16=False, fuse=False, name='yolox-s', nms=0.65, path='/assets/ch14_0616-0625.mp4', save_result=True, trt=False, tsize=640) /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.) return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode) 2021-07-22 14:34:23 | INFO | main:229 - Model Summary: Params: 8.97M, Gflops: 26.81 2021-07-22 14:34:28 | INFO | main:240 - loading checkpoint 2021-07-22 14:34:29 | INFO | main:245 - loaded checkpoint done. 2021-07-22 14:34:29 | INFO | main:183 - video save_path is ./YOLOX_outputs/yolox_s/vis_res/2021_07_22_14_34_29/ch14_0616-0625.mp4 但是检查该目录下 并没有mp4文件。

    opened by EmberaThomas 17
  • Background images

    Background images

    Background images are images with no objects that are added to a dataset to reduce False Positives (FP). When training Yolox, which percentage of backgound in our dataset could improve performance.

    opened by YunlongHu 1
  • YOLOX is not installing

    YOLOX is not installing

    To install yolox I did these two:

    git clone [email protected]:Megvii-BaseDetection/YOLOX.git
    cd YOLOX
    

    Then pip3 install -v -e . is not working. Here is the log of this command.

    Using pip 22.0.2 from /usr/lib/python3/dist-packages/pip (python 3.10)
    Defaulting to user installation because normal site-packages is not writeable
    Obtaining file:///mnt/Shared/azimjon/YOLOX
      Running command python setup.py egg_info
      running egg_info
      creating /tmp/pip-pip-egg-info-ypvf739l/yolox.egg-info
      writing /tmp/pip-pip-egg-info-ypvf739l/yolox.egg-info/PKG-INFO
      writing dependency_links to /tmp/pip-pip-egg-info-ypvf739l/yolox.egg-info/dependency_links.txt
      writing requirements to /tmp/pip-pip-egg-info-ypvf739l/yolox.egg-info/requires.txt
      writing top-level names to /tmp/pip-pip-egg-info-ypvf739l/yolox.egg-info/top_level.txt
      writing manifest file '/tmp/pip-pip-egg-info-ypvf739l/yolox.egg-info/SOURCES.txt'
      /home/azimjon/.local/lib/python3.10/site-packages/torch/utils/cpp_extension.py:476: UserWarning: Attempted to use ninja as the BuildExtension backend but we could not find ninja.. Falling back to using the slow distutils backend.
        warnings.warn(msg.format('we could not find ninja.'))
      reading manifest file '/tmp/pip-pip-egg-info-ypvf739l/yolox.egg-info/SOURCES.txt'
      reading manifest template 'MANIFEST.in'
      warning: no files found matching '*.cu' under directory 'yolox'
      warning: no files found matching '*.cuh' under directory 'yolox'
      warning: no files found matching '*.cc' under directory 'yolox'
      adding license file 'LICENSE'
      writing manifest file '/tmp/pip-pip-egg-info-ypvf739l/yolox.egg-info/SOURCES.txt'
      Preparing metadata (setup.py) ... done
    Collecting loguru
      Using cached loguru-0.6.0-py3-none-any.whl (58 kB)
    Collecting ninja
      Using cached ninja-1.11.1-py2.py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (145 kB)
    Collecting numpy
      Using cached numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB)
    Collecting onnx-simplifier==0.4.1
      Using cached onnx-simplifier-0.4.1.tar.gz (19.8 MB)
      Running command python setup.py egg_info
      fatal: not a git repository (or any of the parent directories): .git
      fatal: not a git repository (or any of the parent directories): .git
      Traceback (most recent call last):
        File "<string>", line 2, in <module>
        File "<pip-setuptools-caller>", line 34, in <module>
        File "/tmp/pip-install-q2xkxl0n/onnx-simplifier_795fe5484b37426fb7feb48837b76bd9/setup.py", line 64, in <module>
          assert CMAKE, 'Could not find "cmake" executable!'
      AssertionError: Could not find "cmake" executable!
      error: subprocess-exited-with-error
      
      × python setup.py egg_info did not run successfully.
      │ exit code: 1
      ╰─> See above for output.
      
      note: This error originates from a subprocess, and is likely not a problem with pip.
      full command: /usr/bin/python3 -c '
      exec(compile('"'"''"'"''"'"'
      # This is <pip-setuptools-caller> -- a caller that pip uses to run setup.py
      #
      # - It imports setuptools before invoking setup.py, to enable projects that directly
      #   import from `distutils.core` to work with newer packaging standards.
      # - It provides a clear error message when setuptools is not installed.
      # - It sets `sys.argv[0]` to the underlying `setup.py`, when invoking `setup.py` so
      #   setuptools doesn'"'"'t think the script is `-c`. This avoids the following warning:
      #     manifest_maker: standard file '"'"'-c'"'"' not found".
      # - It generates a shim setup.py, for handling setup.cfg-only projects.
      import os, sys, tokenize
      
      try:
          import setuptools
      except ImportError as error:
          print(
              "ERROR: Can not execute `setup.py` since setuptools is not available in "
              "the build environment.",
              file=sys.stderr,
          )
          sys.exit(1)
      
      __file__ = %r
      sys.argv[0] = __file__
      
      if os.path.exists(__file__):
          filename = __file__
          with tokenize.open(__file__) as f:
              setup_py_code = f.read()
      else:
          filename = "<auto-generated setuptools caller>"
          setup_py_code = "from setuptools import setup; setup()"
      
      exec(compile(setup_py_code, filename, "exec"))
      '"'"''"'"''"'"' % ('"'"'/tmp/pip-install-q2xkxl0n/onnx-simplifier_795fe5484b37426fb7feb48837b76bd9/setup.py'"'"',), "<pip-setuptools-caller>", "exec"))' egg_info --egg-base /tmp/pip-pip-egg-info-nazgrqy3
      cwd: /tmp/pip-install-q2xkxl0n/onnx-simplifier_795fe5484b37426fb7feb48837b76bd9/
      Preparing metadata (setup.py) ... error
    error: metadata-generation-failed
    
    × Encountered error while generating package metadata.
    ╰─> See above for output.
    
    note: This is an issue with the package mentioned above, not pip.
    hint: See above for details.
    
    
    opened by azimjonn 5
  • windows command ['ninja','-v'] subprocess.CalledProcessError

    windows command ['ninja','-v'] subprocess.CalledProcessError

    image image

    My PC is Window10. I entered python tools/train.py -f exps/my/custom_yolox_s.py -c yolox_s.pth --occupy --cache --devices 0 --batch-size 16 in anaconda prompt. I trained my custom dataset, and training worked well. However, when loading and preparing results during train interval, the error appeared...

    image I checked ninja installed in my env. Also, I even add the ninja path to system path

    image I saw other issues in YOLOX, so I checked from yolox.layers import FastCOCOEvalOp, but it had some problems.

    Please help me... I read other questions, but there's no solved.

    opened by gjgjos 0
  • hi,bro,please help ,

    hi,bro,please help ,

    When I train my own dataset, I always report this result at the beginning. I don't know exactly what went wrong. I'm going crazy. Please help me think about it

    2022-12-16 22:46:39 | INFO | yolox.core.trainer:203 - ---> start train epoch1 C:\cb\pytorch_1000000000000\work\aten\src\ATen\native\cuda\ScatterGatherKernel.cu:276: block: [0,0,0], thread: [0,0,0] Assertion idx_dim >= 0 && idx_dim < index_size && "index out of bounds" failed. 2022-12-16 22:46:42 | INFO | yolox.core.trainer:195 - Training of experiment is done and the best AP is 0.00 2022-12-16 22:46:42 | ERROR | yolox.core.launch:98 - An error has been caught in function 'launch', process 'MainProcess' (12104), thread 'MainThread' (15040): Traceback (most recent call last):

    File "tools\train.py", line 133, in launch(

    (x) H:\YOLOX-0.3.0>python tools/train.py -f exps/example/custom/yolox_s.py -d 1 -b 8

    opened by wudizuixiaosa 0
Releases(0.3.0)
Owner
BaseDetection Team of Megvii
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
Companion code for the paper "An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence" (NeurIPS 2021)

ReLU-GP Residual (RGPR) This repository contains code for reproducing the following NeurIPS 2021 paper: @inproceedings{kristiadi2021infinite, title=

Agustinus Kristiadi 4 Dec 26, 2021
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022