DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

Overview

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper)

Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang

Abstract

In this paper, we address a new task called instance cosegmentation. Given a set of images jointly covering object instances of a specific category, instance co-segmentation aims to identify all of these instances and segment each of them, i.e. generating one mask for each instance. This task is important since instance-level segmentation is preferable for humans and many vision applications. It is also challenging because no pixel-wise annotated training data are available and the number of instances in each image is unknown. We solve this task by dividing it into two sub-tasks, co-peak search and instance mask segmentation. In the former sub-task, we develop a CNN-based network to detect the co-peaks as well as co-saliency maps for a pair of images. A co-peak has two endpoints, one in each image, that are local maxima in the response maps and similar to each other. Thereby, the two endpoints are potentially covered by a pair of instances of the same category. In the latter subtask, we design a ranking function that takes the detected co-peaks and co-saliency maps as inputs and can select the object proposals to produce the final results. Our method for instance co-segmentation and its variant for object colocalization are evaluated on four datasets, and achieve favorable performance against the state-of-the-art methods.

Examples

Two examples of instance co-segmentation on categories bird and sheep, respectively. An instance here refers to an object appearing in an image. In each example, the top row gives the input images while the bottom row shows the instances segmented by our method. The instance-specific coloring indicates that our method produces a segmentation mask for each instance.

Overview of our method

The proposed method contains two stages, co-peak search within the blue-shaded background and instance mask segmentation within the red-shaded background. For searching co-peaks in a pair of images, our model extracts image features, estimates their co-saliency maps, and performs feature correlation for co-peak localization. The model is optimized by three losses, including the co-peak loss, the affinity loss, and the saliency loss. For instance mask segmentation, we design a ranking function taking the detected co-peaks, the co-saliency maps, and the object proposals as inputs, and select the top-ranked proposal for each detected instance.

Results

  • Instance co-segmentation

The performance of instance co-segmentation on the four collected datasets is shown. The numbers in red and green show the best and the second best results, respectively. The column “trained” indicates whether additional training data are used.

  • Object co-localization

The performance of object co-localization on the four datasets is shown. The numbers in red and green indicate the best and the second best results, respectively. The column “trained” indicates whether additional training data are used.

Please cite our paper if this code is useful for your research.


@inproceedings{HsuCVPR19,
  author = {Kuang-Jui Hsu and Yen-Yu Lin and Yung-Yu Chuang},
  booktitle = {IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)},
  title = {DeepCO$^3$: Deep Instance Co-segmentation by Co-peak Search and Co-saliency Detection},
  year = {2019}
}

Codes for DeepCO3

Demo for all stages: "RunDeepInstCoseg.m"

  • Including all files in "Lib" (Downloading MatConvnet is not necessary)
  • May be slightly different from the ones in paper because of the randdom seeds

Datasets (about 34 GB):

  • Including four collected datasets
  • Containing the images, ground-truth masks, salinecy maps and object proposals
  • GoogleDrive

Results reported in the papers (about 4 GB):

Download Codes from GoogleDrive :


Errata:

  • Thank Howard Yu-Chun Lo for pointing the typo in Eq. (4). The corrected one is listed in the following:

Owner
Kuang-Jui Hsu
Kuang-Jui Hsu
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
Rohit Ingole 2 Mar 24, 2022
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
An Active Automata Learning Library Written in Python

AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto

TU Graz - SAL Dependable Embedded Systems Lab (DES Lab) 78 Dec 30, 2022
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022