Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Related tags

Deep LearningRPS_LJE
Overview

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models

This repository is the official implementation of Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021. (will update the link)

Introduction

We propose a novel sample-based explanation method for classifiers with a novel derivation of representer point with Taylor Expansion on the Jacobian matrix.

If you would like to cite this work, a sample bibtex citation is as following:

@inproceedings{yi2021representer,
 author = {Yi Sui, Ga Wu, Scott Sanner},
 booktitle = {Advances in Neural Information Processing Systems},
 title = {Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models},
 year = {2021}
}

Set up

To install requirements:

pip install -r requirements.txt

Change the root path in config.py to the path to the project

project_root = #your path here

Download the pre-trained models and calculated weights here

  • Dowload and unzip the saved_models_MODEL_NAME
  • Put the content into the corresponding folders ("models/ MODEL_NAME /saved_models")

Training

In our paper, we run experiment with three tasks

  • CIFAR image classification with ResNet-20 (CNN)
  • IMDB sentiment classification with Bi-LSTM (RNN)
  • German credit analysis with XGBoost (Xgboost)

The models are implemented in the models directory with pre-trained weights under "models/ MODEL_NAME /saved_models/base" : ResNet (CNN), Bi-LSTM (RNN), and XGBoost.

To train theses model(s) in the paper, run the following commands:

python models/CNN/train.py --lr 0.01 --epochs 10 --saved_path saved_models/base
python models/RNN/train.py --lr 1e-3 --epochs 10 --saved_path saved_models/base --use_pretrained True
python models/Xgboost/train.py

Caculate weights

We implemented three different explainers: RPS-LJE, RPS-l2 (modified from official repository of RPS-l2), and Influence Function. To calculate the importance weights, run the following commands:

python explainer/calculate_ours_weights.py --model CNN --lr 0.01
python explainer/calculate_representer_weights.py --model RNN --lmbd 0.003 --epoch 3000
python explainer/calculate_influence.py --model Xgboost

Experiments

Dataset debugging experiment

To run the dataset debugging experiments, run the following commands:

python dataset_debugging/experiment_dataset_debugging_cnn.py --num_of_run 10 --flip_portion 0.2 --path ../models/CNN/saved_models/experiment_dataset_debugging --lr 1e-5
python dataset_debugging/experiment_dataset_debugging_cnn.py --num_of_run 10 --flip_portion 0.2 --path ../models/CNN/saved_models/experiment_dataset_debugging_fix_random_split --lr 1e-5 --seed 11

python dataset_debugging/experiment_dataset_debugging_rnn.py --num_of_run 10 --flip_portion 0.2 --path ../models/RNN/saved_models/experiment_dataset_debugging --lr 1e-5

python dataset_debugging/experiment_dataset_debugging_Xgboost.py --num_of_run 10 --flip_portion 0.3 --path ../models/Xgboost/saved_models/experiment_dataset_debugging --lr 1e-5

The trained models, intermediate outputs, explainer weights, and accuracies at each checkpoint are stored under the specified paths "models/MODEL_NAME/saved_models/experiment_dataset_debugging". To visualize the results, run the notebooks plot_res_cnn.ipynb, plot_res_cnn_fixed_random_split.ipynb, plot_res_rnn.ipynb, plot_res_xgboost.ipynb. The results are saved under folder dataset_debugging/figs.

Other experiments

All remaining experiments are in Jupyter-notebooks organized under "models/ MODEL_NAME /experiments" : ResNet (CNN), Bi-LSTM (RNN), and XGBoost.

A comparison of explanation provided by Influence Function, RPS-l2, and RPS-LJE. Explanation for Image Classification

Owner
Yi(Amy) Sui
Yi(Amy) Sui
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
HyDiff: Hybrid Differential Software Analysis

HyDiff: Hybrid Differential Software Analysis This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential

Yannic Noller 22 Oct 20, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
JugLab 33 Dec 30, 2022
SciFive: a text-text transformer model for biomedical literature

SciFive SciFive provided a Text-Text framework for biomedical language and natural language in NLP. Under the T5's framework and desrbibed in the pape

Long Phan 54 Dec 24, 2022
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
An implementation of the paper "A Neural Algorithm of Artistic Style"

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art

Srijarko Roy 27 Sep 20, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022