Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Overview

Point-Based Modeling of Human Clothing

Paper | Project page | Video

This is an official PyTorch code repository of the paper "Point-Based Modeling of Human Clothing" (accepted to ICCV, 2021).

Setup

Build docker

  • Prerequisites: your nvidia driver should support cuda 10.2, Windows or Mac are not supported.
  • Clone repo:
    • git clone https://github.com/izakharkin/point_based_clothing.git
    • cd point_based_clothing
    • git submodule init && git submodule update
  • Docker setup:
  • Download 10_nvidia.json and place it in the docker/ folder
  • Create docker image:
    • Build on your own: run 2 commands
  • Inside the docker container: source activate pbc

Download data

  • Download the SMPL neutral model from SMPLify project page:
    • Register, go to the Downloads section, download SMPLIFY_CODE_V2.ZIP, and unpack it;
    • Move smplify_public/code/models/basicModel_neutral_lbs_10_207_0_v1.0.0.pkl to data/smpl_models/SMPL_NEUTRAL.pkl.
  • Download models checkpoints (~570 Mb): Google Drive and place them to the checkpoints/ folder;
  • Download a sample data we provide to check the appearance fitting (~480 Mb): Google Drive, unpack it, and place psp/ folder to the samples/ folder.

Run

We provide scripts for geometry fitting and inference and appearance fitting and inference.

Geometry (outfit code)

Fitting

To fit a style outfit code to a single image one can run:

python fit_outfit_code.py --config_name=outfit_code/psp

The learned outfit codes are saved to out/outfit_code/outfit_codes_<dset_name>.pkl by default. The visualization of the process is in out/outfit_code/vis_<dset_name>/:

  • Coarse fitting stage: four outfit codes initialized randomly and being optimized simultaneosly.

outfit_code_fitting_coarse

  • Fine fitting stage: mean of found outfit codes is being optimized further to possibly imrove the reconstruction.

outfit_code_fitting_fine

Note: visibility_thr hyperparameter in fit_outfit_code.py may affect the quality of result point cloud (e.f. make it more sparse). Feel free to tune it if the result seems not perfect.

vis_thr_360

Inference

outfit_code_inference

To further infer the fitted outfit style on the train or on new subjects please see infer_outfit_code.ipynb. To run jupyter notebook server from the docker, run this inside the container:

jupyter notebook --ip=0.0.0.0 --port=8087 --no-browser 

Appearance (neural descriptors)

Fitting

To fit a clothing appearance to a sequence of frames one can run:

python fit_appearance.py --config_name=appearance/psp_male-3-casual

The learned neural descriptors ntex0_<epoch>.pth and neural rendering network weights model0_<epoch>.pth are saved to out/appearance/<dset_name>/<subject_id>/<experiment_dir>/checkpoints/ by default. The visualization of the process is in out/appearance/<dset_name>/<subject_id>/<experiment_dir>/visuals/.

Inference

appearance_inference

To further infer the fitted clothing point cloud and its appearance on the train or on new subjects please see infer_appearance.ipynb. To run jupyter notebook server from the docker, run this inside the container:

jupyter notebook --ip=0.0.0.0 --port=8087 --no-browser 

Citation

If you find our work helpful, please do not hesitate to cite us:

@InProceedings{Zakharkin_2021_ICCV,
    author    = {Zakharkin, Ilya and Mazur, Kirill and Grigorev, Artur and Lempitsky, Victor},
    title     = {Point-Based Modeling of Human Clothing},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {14718-14727}
}

Non-commercial use only.

Related projects

We also thank the authors of Cloth3D and PeopleSnapshot datasets.

Owner
Visual Understanding Lab @ Samsung AI Center Moscow
Visual Understanding Lab @ Samsung AI Center Moscow
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning

CxGrad - Official PyTorch Implementation Contextual Gradient Scaling for Few-Shot Learning Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song In WACV 2

Sanghyuk Lee 4 Dec 05, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
Advantage Actor Critic (A2C): jax + flax implementation

Advantage Actor Critic (A2C): jax + flax implementation Current version supports only environments with continious action spaces and was tested on muj

Andrey 3 Jan 23, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric

PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to

William Mayner 433 Dec 31, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

OFA Sys 1.4k Jan 08, 2023
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023