Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Related tags

Deep LearningFISH
Overview

Fisher Induced Sparse uncHanging (FISH) Mask

This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neural Networks with Fixed Sparse Masks" by Yi-Lin Sung, Varun Nair, and Colin Raffel. To appear in Neural Information Processing Systems (NeurIPS) 2021.

Abstract: During typical gradient-based training of deep neural networks, all of the model's parameters are updated at each iteration. Recent work has shown that it is possible to update only a small subset of the model's parameters during training, which can alleviate storage and communication requirements. In this paper, we show that it is possible to induce a fixed sparse mask on the model’s parameters that selects a subset to update over many iterations. Our method constructs the mask out of the parameters with the largest Fisher information as a simple approximation as to which parameters are most important for the task at hand. In experiments on parameter-efficient transfer learning and distributed training, we show that our approach matches or exceeds the performance of other methods for training with sparse updates while being more efficient in terms of memory usage and communication costs.

Setup

pip install transformers/.
pip install datasets torch==1.8.0 tqdm torchvision==0.9.0

FISH Mask: GLUE Experiments

Parameter-Efficient Transfer Learning

To run the FISH Mask on a GLUE dataset, code can be run with the following format:

$ bash transformers/examples/text-classification/scripts/run_sparse_updates.sh <dataset-name> <seed> <top_k_percentage> <num_samples_for_fisher>

An example command used to generate Table 1 in the paper is as follows, where all GLUE tasks are provided at a seed of 0 and a FISH mask sparsity of 0.5%.

$ bash transformers/examples/text-classification/scripts/run_sparse_updates.sh "qqp mnli rte cola stsb sst2 mrpc qnli" 0 0.005 1024

Distributed Training

To use the FISH mask on the GLUE tasks in a distributed setting, one can use the following command.

$ bash transformers/examples/text-classification/scripts/distributed_training.sh <dataset-name> <seed> <num_workers> <training_epochs> <gpu_id>

Note the <dataset-name> here can only contain one task, so an example command could be

$ bash transformers/examples/text-classification/scripts/distributed_training.sh "mnli" 0 2 3.5 0

FISH Mask: CIFAR10 Experiments

To run the FISH mask on CIFAR10, code can be run with the following format:

Distributed Training

$ bash cifar10-fast/scripts/distributed_training_fish.sh <num_samples_for_fisher> <top_k_percentage> <training_epochs> <worker_updates> <learning_rate> <num_workers>

For example, in the paper, we compute the FISH mask of the 0.5% sparsity level by 256 samples and distribute the job to 2 workers for a total of 50 epochs training. Then the command would be

$ bash cifar10-fast/scripts/distributed_training_fish.sh 256 0.005 50 2 0.4 2

Efficient Checkpointing

$ bash cifar10-fast/scripts/small_checkpoints_fish.sh <num_samples_for_fisher> <top_k_percentage> <training_epochs> <learning_rate> <fix_mask>

The hyperparameters are almost the same as distributed training. However, the <fix_mask> is to indicate to fix the mask or not, and a valid input is either 0 or 1 (1 means to fix the mask).

Replicating Results

Replicating each of the tables and figures present in the original paper can be done by running the following:

# Table 1 - Parameter Efficient Fine-Tuning on GLUE

$ bash transformers/examples/text-classification/scripts/run_table_1.sh
# Figure 2 - Mask Sparsity Ablation and Sample Ablation

$ bash transformers/examples/text-classification/scripts/run_figure_2.sh
# Table 2 - Distributed Training on GLUE

$ bash transformers/examples/text-classification/scripts/run_table_2.sh
# Table 3 - Distributed Training on CIFAR10

$ bash cifar10-fast/scripts/distributed_training.sh

# Table 4 - Efficient Checkpointing

$ bash cifar10-fast/scripts/small_checkpoints.sh

Notes

  • For reproduction of Diff Pruning results from Table 1, see code here.

Acknowledgements

We thank Yoon Kim, Michael Matena, and Demi Guo for helpful discussions.

Owner
Varun Nair
Hi! I'm a student at Duke University studying CS. I'm interested in researching AI/ML and its applications in medicine, transportation, & education.
Varun Nair
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022
Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

STARS Laboratory 5 Dec 08, 2022
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
CLIP + VQGAN / PixelDraw

clipit Yet Another VQGAN-CLIP Codebase This started as a fork of @nerdyrodent's VQGAN-CLIP code which was based on the notebooks of @RiversWithWings a

dribnet 276 Dec 12, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
Namish Khanna 40 Oct 11, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

564 Jan 02, 2023
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022