GrailQA: Strongly Generalizable Question Answering

Related tags

Deep LearningGrailQA
Overview

GrailQA: Strongly Generalizable Question Answering

Contributions Welcome License language-python3 made-with-Pytorch paper image

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It can be used to test three levels of generalization in KBQA: i.i.d., compositional, and zero-shot.

This is the accompanying code for the paper "Beyond I.I.D.: Three Levels of Generalization for Question Answering on Knowledge Bases" published at TheWebConf (previously WWW) 2021. For dataset and leaderboard, please refer to the homepage of GrailQA. In this repository, we provide the code for the baseline models for reproducibility and demonstrate how to work with this dataset.

Package Description

This repository is structured as follows:

GrailQA/
├─ model_configs/
    ├─ train/: Configuration files for training
    ├─ test/: Configuration files for inference
├─ data/: Data files for training, validation, and test
├─ ontology/: Processed Freebase ontology files
    ├─ domain_dict: Mapping from a domain in Freebase Commons to all schema items in it
    ├─ domain_info: Mapping from a schema item to a Freebase Commons domain it belongs to
    ├─ fb_roles: Domain and range information for a relation (Note that here domain means a different thing from domains in Freebase Commons)
    ├─ fb_types: Class hierarchy in Freebase
    ├─ reverse_properties: Reverse properties in Freebase 
├─ bert_configs/: BERT configuration used by pytorch_transformer, which you are very unlikely to modify
├─ entity_linking_results/: Entity linking results 
├─ entity_linker/: source code for the entity linker, which is a separate module from our main model
├─ vocabulary/: Preprocessed vocabulary, which is only required by our GloVe-based models
├─ cache/: Cached results for SPARQL queries, which are used to accelerate the experiments by caching many SPARQL query results offline
├─ saved_models/: Trained models
├─ utils/:
    ├─ bert_interface.py: Interface to BERT 
    ├─ logic_form_util: Tools related to logical forms, including the exact match checker for two logical forms
    ├─ search_over_graphs.py: Generate candidate logical forms for our Ranking models
    ├─ sparql_executor: Sparql-related tools
├─ bert_constrained_seq2seq.py: BERT-based model for both Ranking and Transduction
├─ bert_seq2seq_reader.py: Data reader for BERT-based models
├─ constrained_seq2seq.py: GloVe-based model for both Ranking and Transduction
├─ constrained_seq2seq_reader.py: Data reader for GloVe-based models
├─ run.py: Main function

Setup

Follow these steps if you want to reproduce the results in the paper.

  1. Follow Freebase Setup to set up a Virtuoso triplestore service. After starting your virtuoso service, replace the url in utils/sparql_executer.py with your own.
  2. Download cache files from https://1drv.ms/u/s!AuJiG47gLqTznjfRRxdW5YDYFt3o?e=GawH1f and put all the files under cache/.
  3. Download trained models from https://1drv.ms/u/s!AuJiG47gLqTznxbenfeRBrTuTbWz?e=g5Nazi and put all the files under saved_models/.
  4. Download GrailQA dataset and put it under data/.
  5. Install all required libraries:
$ pip install -r requirements.txt

(Note: we have included our adapted version of AllenNLP in this repo so there's no need to separately install that.)

Reproduce Our Results

The predictions of our baseline models can be found via CodaLab. Run predict command to reproduce the predictions. There are several arguments to configure to run predict:

python run.py predict
  [path_to_saved_model]
  [path_to_test_data]
  -c [path_to_the_config_file]
  --output-file [results_file_name] 
  --cuda-device [cuda_device_to_use]

Specifically, to run Ranking+BERT:

$ PYTHONHASHSEED=23 python run.py predict saved_models/BERT/model.tar.gz data/grailqa_v1.0_test_public.json --include-package bert_constrained_seq2seq --include-package bert_seq2seq_reader --include-package utils.bert_interface --use-dataset-reader --predictor seq2seq -c model_configs/test/bert_ranking.jsonnet --output-file bert_ranking.txt --cuda-device 0

To run Ranking+GloVe:

$ PYTHONHASHSEED=23 python run.py predict predict saved_models/GloVe/model.tar.gz data/grailqa_v1.0_test_public.json --include-package constrained_seq2seq --include-package constrained_seq2seq_reader --predictor seq2seq --use-dataset-reader -c model_configs/test/glove_ranking.jsonnet --output-file glove_ranking.txt --cuda-device 0

To run Transduction+BERT:

$ PYTHONHASHSEED=23 python run.py predict saved_models/BERT/model.tar.gz data/grailqa_v1.0_test_public.json --include-package bert_constrained_seq2seq --include-package bert_seq2seq_reader --include-package utils.bert_interface --use-dataset-reader --predictor seq2seq -c model_configs/test/bert_vp.jsonnet --output-file bert_vp.txt --cuda-device 0

To run Transduction+GloVe:

$ PYTHONHASHSEED=23 python run.py predict predict saved_models/GloVe/model.tar.gz data/grailqa_v1.0_test_public.json --include-package constrained_seq2seq --include-package constrained_seq2seq_reader --predictor seq2seq --use-dataset-reader -c model_configs/test/glove_vp.jsonnet --output-file glove_vp.txt --cuda-device 0

Entity Linking

We also release our code for entity linking to facilitate future research. Similar to most other KBQA methods, entity linking is a separate module from our main model. If you just want to run our main models, you do not need to re-run our entity linking module because our models directly use the entity linking results under entity_linking/.

Our entity linker is based on BERT-NER and the popularity-based entity disambiguation in aqqu. Specifically, we use the NER model to identify a set of entity mentions, and then use the identified mentions to retieve Freebase entities from the entity memory constructed from Freebase entity mentions information (i.e., mentions in FACC1 and all alias in Freebase if not included in FACC11).

To run our entity linker, first download the mentions data from https://1drv.ms/u/s!AuJiG47gLqTznjl7VbnOESK6qPW2?e=HDy2Ye and put all data under entity_linker/data/. Second, download our trained NER model from https://1drv.ms/u/s!AuJiG47gLqTznjge7wLqAZiSMIcU?e=5RpKaC, which is trained using the training data of GrailQA, and put it under entity_linker/BERT_NER/. Then you should be all set! We provide a use example in entity_linker/bert_entity_linker.py. Follow the use example to identiy entities using our entity linker for your own data.

[1]: FACC1 containes the mentions information for around 1/8 of Freebase entities, including different mentions for those entities and the frequency for each mention. For entities not included in FACC1, we use the following properties to retrieve the mentions for each entity: , , . Note that we don't have frequency information for those entity mentions, so we simply treat the number of occurences as 1 for all of them in our implementation.

Train New Models

You can also use our code to train new models.

Training Configuration

Following AllenNLP, our train command also takes a configuration file as input to specify all model hyperparameters and training related parameters such as learning rate, batch size, cuda device, etc. Most parameters in the training configuration files (i.e., files under model_configs/train/) are hopefully intutive based on their names, so we will only explain those parameters that might be confusing here.

- ranking: Ranking model or generation mode. True for Ranking, and false for Transduction.
- offline: Whether to use cached files under cache/.
- num_constants_per_group: Number of schema items in each chunk for BERT encoding.
- gq1: True for GraphQuestions, and false for GrailQA.
- use_sparql: Whether to use SPARQL as the target query. Set to be false, because in this paper we are using S-expressions.
- use_constrained_vocab: Whether to do vocabulary pruning or not.
- constrained_vocab: If we do vocabulary pruning, how to do it? Options include 1_step, 2_step and mix2.
- perfect_entity_linking: Whether to assume gold entities are given.

Training Command

To train the BERT-based model, run:

$ PYTHONHASHSEED=23 python run.py train model_configs/train/train_bert.jsonnet --include-package bert_constrained_seq2seq --include-package bert_seq2seq_reader --include-package utils.bert_interface -s [your_path_specified_for_training]

To train the GloVe-based model, run:

$ PYTHONHASHSEED=23 python run.py train model_configs/train/train_glove.jsonnet --include-package constrained_seq2seq --include-package constrained_seq2seq_reader -s [your_path_specified_for_training]

Online Running Time

We also show the running time of inference in online mode, in which offline caches are disabled. The aim of this setting is to mimic the real scenario in production. To report the average running time, we randomly sample 1,000 test questions for each model and run every model on a single GeoForce RTX 2080-ti GPU card with batch size 1. A comparison of different models is shown below:

Transduction Transduction-BERT Transduction-VP Transduction-BERT-VP Ranking Ranking-BERT
Running time (seconds) 60.899 50.176 4.787 1.932 115.459 80.892

The running time is quite significant when either ranking mode or vocabulary pruning is activated. This is because running SPARQL queries to query the 2-hop information (i.e., either candidate logical forms for ranking or 2-hop schema items for vocabulary pruning) is very time-consuming. This is also a general issue for the enumeration+ranking framework in KBQA, which is used by many existing methods. This issue has to some extend been underaddressed so far. A common practice is to use offline cache to store the exectuions of all related SPARQL queries, which assumes the test questions are known in advance. This assumption is true for existing KBQA benchmarks but is not realistic for a real production system. How to improve the efficiency of KBQA models while maintaining their efficacy is still an active area for research.

Citation

@inproceedings{gu2021beyond,
  title={Beyond IID: three levels of generalization for question answering on knowledge bases},
  author={Gu, Yu and Kase, Sue and Vanni, Michelle and Sadler, Brian and Liang, Percy and Yan, Xifeng and Su, Yu},
  booktitle={The World Wide Web Conference},
  year={2021},
  organization={ACM}
}
Owner
OSU DKI Lab
The Data, Knowledge, and Intelligence Lab at Ohio State University
OSU DKI Lab
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N

19 Jan 03, 2023
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022