Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

Overview

RegNet

Designing Network Design Spaces

Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

Paper | Official Implementation

RegNet offer a very nice design space for neural network architectures. RegNet design space consists of networks with simple structure which authors call "Regular" Networks (RegNet). Models in RegNet design space have higher concentration of models that perform well and generalise well. RegNet models are very efficient and run upto 5 times faster than EfficientNet models on GPUs.

Also RegNet models have been used as a backbone in Tesla FSD Stack.

Overview Of AnyNet

  • Main goal of the paper is to help in better understanding of network design and discover principles that generalize across settings.
  • Explore structure aspeck of network design and arrive at low dimensional design space consisting of simple regualar networks
  • Network width and depth can be explained by a quantized linear function.

AnyNet Design Space

The basic structure of models in AnyNet design space consists of a simple Stem which is then followed by the network body that does majority of the computation and a final network head that predicts the class scores. The stem and head networks are kept as simple as possible. The network body consists of 4 stages that operate at progressively lower resolutions.

AnyNet

Structure of network body is determined by block width w, network depth d_i, bottleneck ratio b_i and group widths g. Degrees of freedom at stage 'i' are number of blocks d in each stage, block width w and other block parameters such as stride, padding and so on.

Other models are obtained by refining the design space by adding more constraints on the above parameters. Design space is refined keeping the following things in mind :

  • Simplify structure of design space.
  • Improve the interpretability of design space.
  • Maintain Design space complexity.
  • Maintain model diversity in design space.

AnyNetX

XBlock

  • Uses XBlocks within each block of the network
  • Degrees of freedom in AnyNetX is 16
  • Each network has 4 stages
  • Each stage has 4 parameters (network depth di, block width wi, bottleneck ratio bi, group width gi)
  • bi ∈ {1,2,4}
  • gi ∈ {1,2,3,...,32}
  • wi <= 1024
  • di <= 16

AnyNetX(A)

AnyNetX(A) is same as the above AnyNetX

AnyNetX(B)

In this design space,

  • bottleneck ratio bi is fixed for all stages.
  • performance of models in AnyNetX(B) space is almost equal to AnyNetX(A) in average and best case senarios
  • bi <= 2 seemes to work best.

AnyNetX(C)

In this design space,

  • Shared group width gi for all stages.
  • AnyNetX(C) has 6 fewer degrees of freedom compared to AnyNetX(A)
  • gi > 1 seems to work best

AnyNetX(D)

In AnyNetX(D) design space, authors observed that good networks have increasing stage widths w(i+1) > wi

AnyNetX(E)

In AnyNetX(E) design space, it was observed that as stage widths wi increases, depth di likewise tend to increase except for the last stage.

RegNet

Please refer to Section 3.3 in paper.

Training

Import any of the following variants of RegNet using

from regnet import regnetx_002 as RegNet002
from regnet import Xblock, Yblock # required if you want to use YBlock instead of Xblock. Refer to paper for more details on YBlock

RegNet variants available are:

  • regnetx_002
  • regnetx_004
  • regnetx_006
  • regnetx_008
  • regnetx_016
  • regnetx_032
  • regnetx_040
  • regnetx_064
  • regnetx_080
  • regnetx_120
  • regnetx_160
  • regnetx_320

Import TrainingConfig and Trainer Classes from regnet and use them to train the model as follows

from regnet import TrainingConfig, Trainer

model = RegNet002(block=Xblock, num_classes=10)

training_config = TrainingConfig(max_epochs=10, batch_size=128, learning_rate=3e-4, weight_decay=5e-4, ckpt_path="./regnet.pt")
trainer = Trainer(model = model, train_dataset=train_dataset, test_dataset=test_dataset, config=training_config)
trainer.train()

Note : you need not use TrainingConfig and Trainer classes if you want to write your own training loops. Just importing the respective models would suffice.

TODO

  • Test if model trains when using YBlocks
  • Implement model checkpointing for every 'x' epochs

References

[1] https://github.com/signatrix/regnet

[2] https://github.com/d-li14/regnet.pytorch

@InProceedings{Radosavovic2020,
  title = {Designing Network Design Spaces},
  author = {Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Doll{\'a}r},
  booktitle = {CVPR},
  year = {2020}
}

LICENSE

MIT

Owner
Vishal R
Computer Science Student at PES University.
Vishal R
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
Repositório da disciplina de APC, no segundo semestre de 2021

NOTAS FINAIS: https://github.com/fabiommendes/apc2018/blob/master/nota-final.pdf Algoritmos e Programação de Computadores Este é o Git da disciplina A

16 Dec 16, 2022
Yoga - Yoga asana classifier for python

Yoga Asana Classifier Description Hi welcome to my new deep learning project "Yo

Programminghut 35 Dec 12, 2022
Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," accepted to IEEE SSCI ICES 2021

Evolving-spiking-neuron-cellular-automata-and-networks-to-emulate-in-vitro-neuronal-activity Code accompanying "Evolving spiking neuron cellular autom

SOCRATES: Self-Organizing Computational substRATES 2 Dec 02, 2022
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Corruption Invariant Learning for Re-identification

Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS

Minghui Chen 73 Dec 08, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022