Single object tracking and segmentation.

Related tags

Deep LearningSOTS
Overview

Single/Multiple Object Tracking and Segmentation

Codes and comparison of recent single/multiple object tracking and segmentation.

News

💥 AutoMatch is accepted by ICCV2021. The training and testing code has been released in this codebase.

💥 CSTrack ranks 5/4000 at Tianchi Global AI Competition.

💥 Ocean is accepted by ECCV2020. [OceanPlus] is accepted by IEEE TIP.

💥 SiamDW is accepted by CVPR2019 and selected as oral presentation.

Supported Trackers (SOT and MOT)

Single-Object Tracking (SOT)

Multi-Object Tracking (MOT)

Results Comparison

Branches

  • main: for our SOT trackers
  • MOT: for our MOT trackers
  • v0: old codebase supporting OceanPlus and TensorRT testing.

Please clone the branch to your needs.

Structure

  • experiments: training and testing settings
  • demo: figures for readme
  • dataset: testing dataset
  • data: training dataset
  • lib: core scripts for all trackers
  • snapshot: pre-trained models
  • pretrain: models trained on ImageNet (for training)
  • tracking: training and testing interface
$SOTS
|—— experimnets
|—— lib
|—— snapshot
  |—— xxx.model
|—— dataset
  |—— VOT2019.json 
  |—— VOT2019
     |—— ants1...
  |—— VOT2020
     |—— ants1...
|—— ...

Tracker Details

AutoMatch [ICCV2021]

[Paper] [Raw Results] [Training and Testing Tutorial] [Demo]
AutoMatch replaces the essence of Siamese tracking, i.e. the cross-correlation and its variants, to a learnable matching network. The underlying motivation is that heuristic matching network design relies heavily on expert experience. Moreover, we experimentally find that one sole matching operator is difficult to guarantee stable tracking in all challenging environments. In this work, we introduce six novel matching operators from the perspective of feature fusion instead of explicit similarity learning, namely Concatenation, Pointwise-Addition, Pairwise-Relation, FiLM, Simple-Transformer and Transductive-Guidance, to explore more feasibility on matching operator selection. The analyses reveal these operators' selective adaptability on different environment degradation types, which inspires us to combine them to explore complementary features. We propose binary channel manipulation (BCM) to search for the optimal combination of these operators.

Ocean

Ocean [ECCV2020]

[Paper] [Raw Results] [Training and Testing Tutorial] [Demo]

Ocean proposes a general anchor-free based tracking framework. It includes a pixel-based anchor-free regression network to solve the weak rectification problem of RPN, and an object-aware classification network to learn robust target-related representation. Moreover, we introduce an effective multi-scale feature combination module to replace heavy result fusion mechanism in recent Siamese trackers. This work also serves as the baseline model of OceanPlus. An additional TensorRT toy demo is provided in this repo.

Ocean

SiamDW [CVPR2019]

[Paper] [Raw Results] [Training and Testing Tutorial] [Demo]
SiamDW is one of the pioneering work using deep backbone networks for Siamese tracking framework. Based on sufficient analysis on network depth, output size, receptive field and padding mode, we propose guidelines to build backbone networks for Siamese tracker. Several deeper and wider networks are built following the guidelines with the proposed CIR module.

SiamDW

OceanPlus [IEEE TIP]

[Paper] [Raw Results] [Training and Testing Tutorial] [Demo]
Official implementation of the OceanPlus tracker. It proposes an attention retrieval network (ARN) to perform soft spatial constraints on backbone features. Concretely, we first build a look-up-table (LUT) with the ground-truth mask in the starting frame, and then retrieve the LUT to obtain a target-aware attention map for suppressing the negative influence of background clutter. Furthermore, we introduce a multi-resolution multi-stage segmentation network (MMS) to ulteriorly weaken responses of background clutter by reusing the predicted mask to filter backbone features.

OceanPlus


CSTrack [Arxiv now]

[Paper] [Training and Testing Tutorial] [Demo]
CSTrack proposes a strong ReID based one-shot MOT framework. It includes a novel cross-correlation network that can effectively impel the separate branches to learn task-dependent representations, and a scale-aware attention network that learns discriminative embeddings to improve the ReID capability. This work also provides an analysis of the weak data association ability in one-shot MOT methods. Our improvements make the data association ability of our one-shot model is comparable to two-stage methods while running more faster.

CSTrack

This version can achieve the performance described in the paper (70.7 MOTA on MOT16, 70.6 MOTA on MOT17). The new version will be released soon. If you are interested in our work or have any questions, please contact me at [email protected].

Other trackers, coming soon ...

☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️

References

https://github.com/StrangerZhang/pysot-toolkit
...

Contributors

Owner
ZP ZHANG
NLPR, CASIA. Ph.D condidate
ZP ZHANG
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
GoodNews Everyone! Context driven entity aware captioning for news images

This is the code for a CVPR 2019 paper, called GoodNews Everyone! Context driven entity aware captioning for news images. Enjoy! Model preview: Huge T

117 Dec 19, 2022
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
Papers about explainability of GNNs

Papers about explainability of GNNs

Dongsheng Luo 236 Jan 04, 2023