Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Overview

Discovering Non-monotonic Autoregressive Orderings with Variational Inference

Description

This package contains the source code implementation of the paper "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper).

Inferring good generation orders in natural sequences is challenging. In our main contribution, we propose Variational Order Inference (VOI), which can be efficiently trained to discover autoregressive sequence generation orders in a data driven way without a domain-specific prior.

In VOI, the encoder permutation generator generates non-monotonic autoregressive orders as the latent variable, and the decoder autoregressive (language) model maximizes the joint probability of generating the target sequence under these non-monotonic orders. In conditional text generation tasks, the encoder is implemented as Transformer with non-causal attention, and the decoder is implemented as Transformer-InDIGO (Gu et al., 2019) which generates target sequences through insertion.

Installation

To install this package, first download the package from github, then install it using pip. For CUDA 10.1 (as configured in setup.py), the package versions are Tensorflow 2.3 and PyTorch 1.5, with their corresponding tensorflow_probability and torchvision versions. For CUDA 11.0, you may need to change the package versions in setup.py to be tensorflow==2.4, torch==1.6, tensorflow_probability==0.12.1, and torchvision==0.7.0.

git clone https://github.com/xuanlinli17/autoregressive_inference
cd autoregressive_inference
pip install -e .

Install helper packages for word tokenization and part of speech tagging. Enter the following statements into the python interpreter where you have installed our package.

import nltk
nltk.download('punkt')
nltk.download('brown')
nltk.download('universal_tagset')

Install nlg-eval that contains several helpful metrics for evaluating image captioning. Tasks other than captioning are evaluated through the vizseq package we already installed through setup.py.

pip install git+https://github.com/Maluuba/[email protected]
nlg-eval --setup

Clone wmt16-scripts for machine translation preprocessing.

git clone https://github.com/rsennrich/wmt16-scripts

Configure tensorflow-hungarian

During training, one process of order inference is to obtain permutation matrices from doubly stochastic matrices. This is accomplished through the Hungarian algorithm. Since tf.py_function only allows one gpu to run the function at any time, multi-gpu training is very slow if we use scipy.optimize.linear_sum_assignment (which requires wrapping it with tf.py_function to call). Therefore, we use a pre-written Hungarian-op script and compile it through g++ into dynamic library. During runtime, we can import the dynamic library using tensorflow api. This leads to much faster distributed training.

git clone https://github.com/brandontrabucco/tensorflow-hungarian
cd tensorflow-hungarian
make hungarian_op

If you encounter fatal error: third_party/gpus/cuda/include/cuda_fp16.h: No such file or directory, this could be resolved via link. The generated op could be found in tensorflow-hungarian/tensorflow_hungarian/python/ops/_hungarian_ops.so

Alternatively, we could also generate the op from the repo munkres-tensorflow.

git clone https://github.com/mbaradad/munkres-tensorflow
TF_CFLAGS=( $(python -c 'import tensorflow as tf; print(" ".join(tf.sysconfig.get_compile_flags()))') )
TF_LFLAGS=( $(python -c 'import tensorflow as tf; print(" ".join(tf.sysconfig.get_link_flags()))') )
g++ -std=c++11 -shared munkres-tensorflow/hungarian.cc -o hungarian.so -fPIC ${TF_CFLAGS[@]} ${TF_LFLAGS[@]} -O2

However, this function requires all entries in a matrix to be different (otherwise some strange behaviors will occur), so we also need to uncomment the line sample_permu = sample_permu * 1000 + tf.random.normal(tf.shape(sample_permu)) * 1e-7 in voi/nn/layers/permutation_sinkhorn.py

Setup

Captioning

In this section, we will walk you through how to create a training dataset, using COCO 2017 as an example. In the first step, download COCO 2017 here. Place the extracted .json annotations at ~/annotations and the images at ~/train2017 and ~/val2017 for the training and validation set respectively.

Create a part of speech tagger first. This information is used to visualize the generation orders of captions learnt by our model, and is not used during training.

cd {this_repo}
python scripts/data/create_tagger.py --out_tagger_file tagger.pkl

Extract COCO 2017 into a format compatible with our package. There are several arguments that you can specify to control how the dataset is processed. You may leave all arguments as default except out_caption_folder and annotations_file.

python scripts/data/extract_coco.py --out_caption_folder ~/captions_train2017 --annotations_file ~/annotations/captions_train2017.json
python scripts/data/extract_coco.py --out_caption_folder ~/captions_val2017 --annotations_file ~/annotations/captions_val2017.json

Process the COCO 2017 captions and extract integer features on which to train a non sequential model. There are again several arguments that you can specify to control how the captions are processed. You may leave all arguments as default except out_feature_folder and in_folder, which depend on where you extracted the COCO dataset in the previous step. Note that if vocab_file doesn't exist before, it will be automatically generated. Since we have provided the train2017_vocab.txt we used to train our model, this vocab file will be directly loaded to create integer representations of tokens.

python scripts/data/process_captions.py --out_feature_folder ~/captions_train2017_features --in_folder ~/captions_train2017 \
--tagger_file tagger.pkl --vocab_file train2017_vocab.txt --min_word_frequency 5 --max_length 100
python scripts/data/process_captions.py --out_feature_folder ~/captions_val2017_features --in_folder ~/captions_val2017 \
--tagger_file tagger.pkl --vocab_file train2017_vocab.txt --max_length 100

Process images from the COCO 2017 dataset and extract features using a pretrained Faster RCNN FPN backbone from pytorch checkpoint. Note this script will distribute inference across all visible GPUs on your system. There are several arguments you can specify, which you may leave as default except out_feature_folder and in_folder, which depend on where you extracted the COCO dataset.

python scripts/data/process_images.py --out_feature_folder ~/train2017_features --in_folder ~/train2017 --batch_size 4
python scripts/data/process_images.py --out_feature_folder ~/val2017_features --in_folder ~/val2017 --batch_size 4

Finally, convert the processed features into a TFRecord format for efficient training. Record where you have extracted the COCO dataset in the previous steps and specify out_tfrecord_folder, caption_folder and image_folder at the minimum.

python scripts/data/create_tfrecords_captioning.py --out_tfrecord_folder ~/train2017_tfrecords \
--caption_folder ~/captions_train2017_features --image_folder ~/train2017_features --samples_per_shard 4096
python scripts/data/create_tfrecords_captioning.py --out_tfrecord_folder ~/val2017_tfrecords \
--caption_folder ~/captions_val2017_features --image_folder ~/val2017_features --samples_per_shard 4096

Django

For convenience, we ran the script from NL2code to extract the cleaned dataset from drive and place them in django_data. The vocab file djangovocab.txt is also in that directory. Alternatively, you may download raw data from ase15-django and run python scripts/data/extract_django.py --data_dir {path to all.anno and all.code)

Next, process the Django dataset into TFRecord format for efficient training.

cd {this_repo}

CUDA_VISIBLE_DEVICES=0 python scripts/data/process_django.py --data_folder ./django_data \
--vocab_file ./django_data/djangovocab.txt --dataset_type train/dev/test \
--out_feature_folder ./django_data

CUDA_VISIBLE_DEVICES=0 python scripts/data/create_tfrecords_django.py --out_tfrecord_folder ./django_data \
--dataset_type train/dev/test --feature_folder ./django_data

Gigaword

First, extract the dataset and learn byte-pair encoding.

cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/extract_gigaword.py --data_dir {dataroot}
cd {dataroot}/gigaword
subword-nmt learn-joint-bpe-and-vocab --input src_raw_train.txt tgt_raw_train.txt -s 32000 -o joint_bpe.code --write-vocabulary src_vocab.txt tgt_vocab.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_train.txt > src_train.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_validation.txt > src_validation.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_test.txt > src_test.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_train.txt > tgt_train.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_validation.txt > tgt_validation.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_test.txt > tgt_test.BPE.txt

Then, generate the vocab file, and use this vocab file to convert tokens into integers and store in a feature file. Alternately you may use the gigaword_vocab.txt provided in our repo, which we used to train our model. To do this, set the following --vocab_file argument to be {this_repo}/gigaword_vocab.txt.

cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/process_gigaword.py --out_feature_folder {dataroot}/gigaword \
--data_folder {dataroot}/gigaword --vocab_file {dataroot}/gigaword/gigaword_vocab.txt (or {this_repo}/gigaword_vocab.txt) \
--dataset_type train/validation/test

Finally, generate the train/validation/test tfrecords files.

CUDA_VISIBLE_DEVICES=0 python scripts/data/create_tfrecords_gigaword.py --out_tfrecord_folder {dataroot}/gigaword \
--feature_folder {dataroot}/gigaword --samples_per_shard 4096 --dataset_type train/validation/test

WMT

Here, we use WMT16 Ro-En as an example.

First extract the dataset and learn byte-pair encoding.

cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/extract_wmt.py --language_pair 16 ro en --data_dir {dataroot}
cd {dataroot}/wmt16_translate/ro-en
subword-nmt learn-joint-bpe-and-vocab --input src_raw_train.txt tgt_raw_train.txt -s 32000 -o joint_bpe.code --write-vocabulary src_vocab.txt tgt_vocab.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_train.txt > src_train.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_validation.txt > src_validation.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_test.txt > src_test.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_train.txt > tgt_train.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_validation.txt > tgt_validation.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_test.txt > tgt_test.BPE.txt

Extract corpus with truecase to train the truecaser, which is used for evaluation.

git clone https://github.com/moses-smt/mosesdecoder
cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/extract_wmt.py --language_pair 16 ro en --data_dir {dataroot} --truecase
{path_to_mosesdecoder}/scripts/recaser/train-truecaser.perl -corpus {dataroot}/wmt16_translate/ro-en/src_truecase_train.txt -model {dataroot}/wmt16_translate/ro-en/truecase-model.ro
{path_to_mosesdecoder}/scripts/recaser/train-truecaser.perl -corpus {dataroot}/wmt16_translate/ro-en/tgt_truecase_train.txt -model {dataroot}/wmt16_translate/ro-en/truecase-model.en

Remove the diacritics of Romanian:

git clone https://github.com/rsennrich/wmt16-scripts
cd {dataroot}/wmt16_translate/ro-en/
python {path_to_wmt16-scripts}/preprocess/remove-diacritics.py < src_train.BPE.txt > src_train.BPE.txt
python {path_to_wmt16-scripts}/preprocess/remove-diacritics.py < src_validation.BPE.txt > src_validation.BPE.txt
python {path_to_wmt16-scripts}/preprocess/remove-diacritics.py < src_test.BPE.txt > src_test.BPE.txt

------------Note-------------

In practice, training with the sequence-level distillation dataset (Link) generated using the L2R model with beam size 5 leads to about 2 BLEU improvement on WMT16 Ro-En, intuitively because the target sequences in this new dataset are more consistent. We release the this distilled dataset here. To use this dataset, put src_distillation.BPE.txt and tgt_distillation.BPE.txt in {dataroot}/wmt16_translate/ro-en/. Training on this distilled dataset obtains very similar ordering observations (i.e. the model generates all descriptive tokens before generating the auxillary tokens) compared to training on the original dataset.

-----------------------------

Generate the vocab file (joint vocab for the source and target languages), and use this vocab file to convert tokens into integers and store in a feature file. Since we forgot to remove the diacritics during our initial experiments and we appended all missing vocabs in the diacritics-removed corpus afterwards, the vocab file we used to train our model is slightly different from the one generated through the scripts below, so we have uploaded the vocab file we used to train our model as ro_en_vocab.txt. To use this vocab file, set the following --vocab_file argument to be {this_repo}/ro_en_vocab.txt

cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/process_wmt.py --out_feature_folder {dataroot}/wmt16_translate/ro-en \
--data_folder {dataroot}/wmt16_translate/ro-en --vocab_file {dataroot}/wmt16_translate/ro_en_vocab.txt (or {this_repo}/ro_en_vocab.txt) \
--dataset_type distillation/train/validation/test

Finally, generate the distillation/train/validation/test tfrecords files.

CUDA_VISIBLE_DEVICES=0 python scripts/data/create_tfrecords_wmt.py --out_tfrecord_folder {dataroot}/wmt16_translate/ro-en \
--feature_folder {dataroot}/wmt16_translate/ro-en --samples_per_shard 4096 --dataset_type distillation/train/validation/test

Training

Please see training_scripts.md for details about training a model.

Validation, Test, and Visualization

Please see evaluation_visualization_scripts.md for details about validating / testing a model, along with visualizing the generalization orders of a model.

Pretrained Models

We have provided pretrained models for each task here. You may make a directory ckpt_pretrain under this repo and download them under this directory.

To evaluate the pretrained models and visualize their generalization orders, please see eval_visualize_pretrained_models.md for details.

Citations

@inproceedings{li2021autoregressiveinference,
  title={Discovering Non-monotonic Autoregressive Orderings with Variational Inference},
  author={Li, Xuanlin and Trabucco, Brandon and Park, Dong Huk and Luo, Michael and Shen, Sheng and Darrell, Trevor and Gao, Yang},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=jP1vTH3inC}
}
Owner
Xuanlin (Simon) Li
Researcher in Artificial Intelligence and Machine Learning | PhD student @haosulab at UCSD | Alumni of Berkeley AI
Xuanlin (Simon) Li
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

David Futschik 112 Jan 04, 2023
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

Yusen Zhang 22 Nov 09, 2022
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022