Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Overview

Discovering Non-monotonic Autoregressive Orderings with Variational Inference

Description

This package contains the source code implementation of the paper "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper).

Inferring good generation orders in natural sequences is challenging. In our main contribution, we propose Variational Order Inference (VOI), which can be efficiently trained to discover autoregressive sequence generation orders in a data driven way without a domain-specific prior.

In VOI, the encoder permutation generator generates non-monotonic autoregressive orders as the latent variable, and the decoder autoregressive (language) model maximizes the joint probability of generating the target sequence under these non-monotonic orders. In conditional text generation tasks, the encoder is implemented as Transformer with non-causal attention, and the decoder is implemented as Transformer-InDIGO (Gu et al., 2019) which generates target sequences through insertion.

Installation

To install this package, first download the package from github, then install it using pip. For CUDA 10.1 (as configured in setup.py), the package versions are Tensorflow 2.3 and PyTorch 1.5, with their corresponding tensorflow_probability and torchvision versions. For CUDA 11.0, you may need to change the package versions in setup.py to be tensorflow==2.4, torch==1.6, tensorflow_probability==0.12.1, and torchvision==0.7.0.

git clone https://github.com/xuanlinli17/autoregressive_inference
cd autoregressive_inference
pip install -e .

Install helper packages for word tokenization and part of speech tagging. Enter the following statements into the python interpreter where you have installed our package.

import nltk
nltk.download('punkt')
nltk.download('brown')
nltk.download('universal_tagset')

Install nlg-eval that contains several helpful metrics for evaluating image captioning. Tasks other than captioning are evaluated through the vizseq package we already installed through setup.py.

pip install git+https://github.com/Maluuba/[email protected]
nlg-eval --setup

Clone wmt16-scripts for machine translation preprocessing.

git clone https://github.com/rsennrich/wmt16-scripts

Configure tensorflow-hungarian

During training, one process of order inference is to obtain permutation matrices from doubly stochastic matrices. This is accomplished through the Hungarian algorithm. Since tf.py_function only allows one gpu to run the function at any time, multi-gpu training is very slow if we use scipy.optimize.linear_sum_assignment (which requires wrapping it with tf.py_function to call). Therefore, we use a pre-written Hungarian-op script and compile it through g++ into dynamic library. During runtime, we can import the dynamic library using tensorflow api. This leads to much faster distributed training.

git clone https://github.com/brandontrabucco/tensorflow-hungarian
cd tensorflow-hungarian
make hungarian_op

If you encounter fatal error: third_party/gpus/cuda/include/cuda_fp16.h: No such file or directory, this could be resolved via link. The generated op could be found in tensorflow-hungarian/tensorflow_hungarian/python/ops/_hungarian_ops.so

Alternatively, we could also generate the op from the repo munkres-tensorflow.

git clone https://github.com/mbaradad/munkres-tensorflow
TF_CFLAGS=( $(python -c 'import tensorflow as tf; print(" ".join(tf.sysconfig.get_compile_flags()))') )
TF_LFLAGS=( $(python -c 'import tensorflow as tf; print(" ".join(tf.sysconfig.get_link_flags()))') )
g++ -std=c++11 -shared munkres-tensorflow/hungarian.cc -o hungarian.so -fPIC ${TF_CFLAGS[@]} ${TF_LFLAGS[@]} -O2

However, this function requires all entries in a matrix to be different (otherwise some strange behaviors will occur), so we also need to uncomment the line sample_permu = sample_permu * 1000 + tf.random.normal(tf.shape(sample_permu)) * 1e-7 in voi/nn/layers/permutation_sinkhorn.py

Setup

Captioning

In this section, we will walk you through how to create a training dataset, using COCO 2017 as an example. In the first step, download COCO 2017 here. Place the extracted .json annotations at ~/annotations and the images at ~/train2017 and ~/val2017 for the training and validation set respectively.

Create a part of speech tagger first. This information is used to visualize the generation orders of captions learnt by our model, and is not used during training.

cd {this_repo}
python scripts/data/create_tagger.py --out_tagger_file tagger.pkl

Extract COCO 2017 into a format compatible with our package. There are several arguments that you can specify to control how the dataset is processed. You may leave all arguments as default except out_caption_folder and annotations_file.

python scripts/data/extract_coco.py --out_caption_folder ~/captions_train2017 --annotations_file ~/annotations/captions_train2017.json
python scripts/data/extract_coco.py --out_caption_folder ~/captions_val2017 --annotations_file ~/annotations/captions_val2017.json

Process the COCO 2017 captions and extract integer features on which to train a non sequential model. There are again several arguments that you can specify to control how the captions are processed. You may leave all arguments as default except out_feature_folder and in_folder, which depend on where you extracted the COCO dataset in the previous step. Note that if vocab_file doesn't exist before, it will be automatically generated. Since we have provided the train2017_vocab.txt we used to train our model, this vocab file will be directly loaded to create integer representations of tokens.

python scripts/data/process_captions.py --out_feature_folder ~/captions_train2017_features --in_folder ~/captions_train2017 \
--tagger_file tagger.pkl --vocab_file train2017_vocab.txt --min_word_frequency 5 --max_length 100
python scripts/data/process_captions.py --out_feature_folder ~/captions_val2017_features --in_folder ~/captions_val2017 \
--tagger_file tagger.pkl --vocab_file train2017_vocab.txt --max_length 100

Process images from the COCO 2017 dataset and extract features using a pretrained Faster RCNN FPN backbone from pytorch checkpoint. Note this script will distribute inference across all visible GPUs on your system. There are several arguments you can specify, which you may leave as default except out_feature_folder and in_folder, which depend on where you extracted the COCO dataset.

python scripts/data/process_images.py --out_feature_folder ~/train2017_features --in_folder ~/train2017 --batch_size 4
python scripts/data/process_images.py --out_feature_folder ~/val2017_features --in_folder ~/val2017 --batch_size 4

Finally, convert the processed features into a TFRecord format for efficient training. Record where you have extracted the COCO dataset in the previous steps and specify out_tfrecord_folder, caption_folder and image_folder at the minimum.

python scripts/data/create_tfrecords_captioning.py --out_tfrecord_folder ~/train2017_tfrecords \
--caption_folder ~/captions_train2017_features --image_folder ~/train2017_features --samples_per_shard 4096
python scripts/data/create_tfrecords_captioning.py --out_tfrecord_folder ~/val2017_tfrecords \
--caption_folder ~/captions_val2017_features --image_folder ~/val2017_features --samples_per_shard 4096

Django

For convenience, we ran the script from NL2code to extract the cleaned dataset from drive and place them in django_data. The vocab file djangovocab.txt is also in that directory. Alternatively, you may download raw data from ase15-django and run python scripts/data/extract_django.py --data_dir {path to all.anno and all.code)

Next, process the Django dataset into TFRecord format for efficient training.

cd {this_repo}

CUDA_VISIBLE_DEVICES=0 python scripts/data/process_django.py --data_folder ./django_data \
--vocab_file ./django_data/djangovocab.txt --dataset_type train/dev/test \
--out_feature_folder ./django_data

CUDA_VISIBLE_DEVICES=0 python scripts/data/create_tfrecords_django.py --out_tfrecord_folder ./django_data \
--dataset_type train/dev/test --feature_folder ./django_data

Gigaword

First, extract the dataset and learn byte-pair encoding.

cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/extract_gigaword.py --data_dir {dataroot}
cd {dataroot}/gigaword
subword-nmt learn-joint-bpe-and-vocab --input src_raw_train.txt tgt_raw_train.txt -s 32000 -o joint_bpe.code --write-vocabulary src_vocab.txt tgt_vocab.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_train.txt > src_train.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_validation.txt > src_validation.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_test.txt > src_test.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_train.txt > tgt_train.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_validation.txt > tgt_validation.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_test.txt > tgt_test.BPE.txt

Then, generate the vocab file, and use this vocab file to convert tokens into integers and store in a feature file. Alternately you may use the gigaword_vocab.txt provided in our repo, which we used to train our model. To do this, set the following --vocab_file argument to be {this_repo}/gigaword_vocab.txt.

cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/process_gigaword.py --out_feature_folder {dataroot}/gigaword \
--data_folder {dataroot}/gigaword --vocab_file {dataroot}/gigaword/gigaword_vocab.txt (or {this_repo}/gigaword_vocab.txt) \
--dataset_type train/validation/test

Finally, generate the train/validation/test tfrecords files.

CUDA_VISIBLE_DEVICES=0 python scripts/data/create_tfrecords_gigaword.py --out_tfrecord_folder {dataroot}/gigaword \
--feature_folder {dataroot}/gigaword --samples_per_shard 4096 --dataset_type train/validation/test

WMT

Here, we use WMT16 Ro-En as an example.

First extract the dataset and learn byte-pair encoding.

cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/extract_wmt.py --language_pair 16 ro en --data_dir {dataroot}
cd {dataroot}/wmt16_translate/ro-en
subword-nmt learn-joint-bpe-and-vocab --input src_raw_train.txt tgt_raw_train.txt -s 32000 -o joint_bpe.code --write-vocabulary src_vocab.txt tgt_vocab.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_train.txt > src_train.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_validation.txt > src_validation.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary src_vocab.txt --vocabulary-threshold 50 < src_raw_test.txt > src_test.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_train.txt > tgt_train.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_validation.txt > tgt_validation.BPE.txt
subword-nmt apply-bpe -c joint_bpe.code --vocabulary tgt_vocab.txt --vocabulary-threshold 50 < tgt_raw_test.txt > tgt_test.BPE.txt

Extract corpus with truecase to train the truecaser, which is used for evaluation.

git clone https://github.com/moses-smt/mosesdecoder
cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/extract_wmt.py --language_pair 16 ro en --data_dir {dataroot} --truecase
{path_to_mosesdecoder}/scripts/recaser/train-truecaser.perl -corpus {dataroot}/wmt16_translate/ro-en/src_truecase_train.txt -model {dataroot}/wmt16_translate/ro-en/truecase-model.ro
{path_to_mosesdecoder}/scripts/recaser/train-truecaser.perl -corpus {dataroot}/wmt16_translate/ro-en/tgt_truecase_train.txt -model {dataroot}/wmt16_translate/ro-en/truecase-model.en

Remove the diacritics of Romanian:

git clone https://github.com/rsennrich/wmt16-scripts
cd {dataroot}/wmt16_translate/ro-en/
python {path_to_wmt16-scripts}/preprocess/remove-diacritics.py < src_train.BPE.txt > src_train.BPE.txt
python {path_to_wmt16-scripts}/preprocess/remove-diacritics.py < src_validation.BPE.txt > src_validation.BPE.txt
python {path_to_wmt16-scripts}/preprocess/remove-diacritics.py < src_test.BPE.txt > src_test.BPE.txt

------------Note-------------

In practice, training with the sequence-level distillation dataset (Link) generated using the L2R model with beam size 5 leads to about 2 BLEU improvement on WMT16 Ro-En, intuitively because the target sequences in this new dataset are more consistent. We release the this distilled dataset here. To use this dataset, put src_distillation.BPE.txt and tgt_distillation.BPE.txt in {dataroot}/wmt16_translate/ro-en/. Training on this distilled dataset obtains very similar ordering observations (i.e. the model generates all descriptive tokens before generating the auxillary tokens) compared to training on the original dataset.

-----------------------------

Generate the vocab file (joint vocab for the source and target languages), and use this vocab file to convert tokens into integers and store in a feature file. Since we forgot to remove the diacritics during our initial experiments and we appended all missing vocabs in the diacritics-removed corpus afterwards, the vocab file we used to train our model is slightly different from the one generated through the scripts below, so we have uploaded the vocab file we used to train our model as ro_en_vocab.txt. To use this vocab file, set the following --vocab_file argument to be {this_repo}/ro_en_vocab.txt

cd {this_repo}
CUDA_VISIBLE_DEVICES=0 python scripts/data/process_wmt.py --out_feature_folder {dataroot}/wmt16_translate/ro-en \
--data_folder {dataroot}/wmt16_translate/ro-en --vocab_file {dataroot}/wmt16_translate/ro_en_vocab.txt (or {this_repo}/ro_en_vocab.txt) \
--dataset_type distillation/train/validation/test

Finally, generate the distillation/train/validation/test tfrecords files.

CUDA_VISIBLE_DEVICES=0 python scripts/data/create_tfrecords_wmt.py --out_tfrecord_folder {dataroot}/wmt16_translate/ro-en \
--feature_folder {dataroot}/wmt16_translate/ro-en --samples_per_shard 4096 --dataset_type distillation/train/validation/test

Training

Please see training_scripts.md for details about training a model.

Validation, Test, and Visualization

Please see evaluation_visualization_scripts.md for details about validating / testing a model, along with visualizing the generalization orders of a model.

Pretrained Models

We have provided pretrained models for each task here. You may make a directory ckpt_pretrain under this repo and download them under this directory.

To evaluate the pretrained models and visualize their generalization orders, please see eval_visualize_pretrained_models.md for details.

Citations

@inproceedings{li2021autoregressiveinference,
  title={Discovering Non-monotonic Autoregressive Orderings with Variational Inference},
  author={Li, Xuanlin and Trabucco, Brandon and Park, Dong Huk and Luo, Michael and Shen, Sheng and Darrell, Trevor and Gao, Yang},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=jP1vTH3inC}
}
Owner
Xuanlin (Simon) Li
Researcher in Artificial Intelligence and Machine Learning | PhD student @haosulab at UCSD | Alumni of Berkeley AI
Xuanlin (Simon) Li
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)

MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12

Yunjey Choi 401 Dec 30, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
Classify the disease status of a plant given an image of a passion fruit

Passion Fruit Disease Detection I tried to create an accurate machine learning models capable of localizing and identifying multiple Passion Fruits in

3 Nov 09, 2021
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
Adaptation through prediction: multisensory active inference torque control

Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst

Cristian Meo 1 Nov 07, 2022
Deep learning for Engineers - Physics Informed Deep Learning

SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S

SciANN 195 Jan 03, 2023
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

1.4k Jan 01, 2023
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022