A transformer which can randomly augment VOC format dataset (both image and bbox) online.

Overview

VocAug

It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it is hard to use. Or, it is offline but not online so it needs very very large disk volume.

Here, is a simple transformer which can randomly augment VOC format dataset online! It can work with only numpy and cv2 packages!

The highlight is,

  1. it augments both image and b-box!!!
  2. it only use cv2 & numpy, means it could be used simply without any other awful packages!!!
  3. it is an online transformer!!!

It contains methods of:

  1. Random HSV augmentation
  2. Random Cropping augmentation
  3. Random Flipping augmentation
  4. Random Noise augmentation
  5. Random rotation or translation augmentation

All the methods can adjust abundant arguments in the constructed function of class VocAug.voc_aug.

Here are some visualized examples:

(click to enlarge)

e.g. #1 e.g. #2
eg1 eg2

More

This script was created when I was writing YOLOv1 object detectin algorithm for learning and entertainment. See more details at https://github.com/BestAnHongjun/YOLOv1-pytorch

Quick Start

1. Download this repo.

git clone https://github.com/BestAnHongjun/VOC-Augmentation.git

or you can download the zip file directly.

2. Enter project directory

cd VOC-Augmentation

3. Install the requirements

pip install -r requirements.txt

For some machines with mixed environments, you need to use pip3 but not pip.

Or you can install the requirements by hand. The default version is ok.

pip install numpy
pip install opencv-python
pip install opencv-contrib-python
pip install matplotlib

4.Create your own project directory

Create your own project directory, then copy the VocAug directory to yours. Or you can use this directory directly.

5. Create your own demo.py file

Or you can use my demo.py directly.

Thus, you should have a project directory with structure like this:

Project_Dir
  |- VocAug (dir)
  |- demo.py

Open your demo.py.

First, import some system packages.

import os
import matplotlib.pyplot as plt

Second, import my VocAug module in your project directory.

from VocAug.voc_aug import voc_aug
from VocAug.transform.voc2vdict import voc2vdict
from VocAug.utils.viz_bbox import viz_vdict

Third, Create two transformer.

voc2vdict_transformer = voc2vdict()
augmentation_transformer = voc_aug()

For the class voc2vdict, when you call its instance with args of xml_file_path and image_file_path, it can read the xml file and the image file and then convert them to VOC-format-dict, represented by vdict.

What is vdict? It is a python dict, which has a structure like:

vdict = {
    "image": numpy.array([[[....]]]),   # Cv2 image Mat. (Shape:[h, w, 3], RGB format)
    "filename": 000048,                 # filename without suffix
    "objects": [{                       # A list of dicts representing b-boxes
        "class_name": "house",
        "class_id": 2,                  # index of self.class_list
        "bbox": (x_min, y_min, x_max, y_max)
    }, {
        ...
    }]
}

For the class voc_aug, when you call its instance by args of vdict, it can augment both image and bbox of the vdict, then return a vdict augmented.

It will randomly use augmentation methods include:

  1. Random HSV augmentation
  2. Random Cropping augmentation
  3. Random Flipping augmentation
  4. Random Noise augmentation
  5. Random rotation or translation augmentation

Then, let's augment the vdict.

# prepare the xml-file-path and the image-file-path
filename = "000007"
file_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "dataset")
xml_file_path = os.path.join(file_dir, "Annotations", "{}.xml".format(filename))
image_file_path = os.path.join(file_dir, "JPEGImages", "{}.jpg".format(filename))

# Firstly convert the VOC format xml&image path to VOC-dict(vdict), then augment it.
src_vdict = voc2vdict_transformer(xml_file_path, image_file_path)
image_aug_vdict = augmentation_transformer(src_vdict)

The 000007.jpg and 000007.xml is in the dataset directory under Annotations and JPEGImages separately.

Then you can visualize the vdict. I have prepare a tool for you. That is viz_vdict function in VocAug.utils.viz_bbox module. It will return you a cv2 image when you input a vdict into it.

You can use it like:

image_src = src_vdict.get("image")
image_src_with_bbox = viz_vdict(src_vdict)

image_aug = image_aug_vdict.get("image")
image_aug_with_bbox = viz_vdict(image_aug_vdict)

Visualize them by matplotlib.

plt.figure(figsize=(15, 10))
plt.subplot(2, 2, 1)
plt.title("src")
plt.imshow(image_src)
plt.subplot(2, 2, 3)
plt.title("src_bbox")
plt.imshow(image_src_with_bbox)
plt.subplot(2, 2, 2)
plt.title("aug")
plt.imshow(image_aug)
plt.subplot(2, 2, 4)
plt.title("aug_bbox")
plt.imshow(image_aug_with_bbox)
plt.show()

Then you will get a random result like this. eg1

For more detail see demo.py .

Detail of Algorithm

I am writing this part...

Owner
Coder.AN
Researcher, CoTAI Lab, Dalian Maritime University. Focus on Computer Vision, Moblie Vision, and Machine Learning. Contact me at
Coder.AN
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
Double pendulum simulator using a symplectic Euler's method and Hamiltonian mechanics

Symplectic Double Pendulum Simulator Double pendulum simulator using a symplectic Euler's method. The program calculates the momentum and position of

Scott Marino 1 Jan 12, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images This repository contains the implementation of the following paper

Seonggwan Ko 9 Jul 30, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023