A transformer which can randomly augment VOC format dataset (both image and bbox) online.

Overview

VocAug

It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it is hard to use. Or, it is offline but not online so it needs very very large disk volume.

Here, is a simple transformer which can randomly augment VOC format dataset online! It can work with only numpy and cv2 packages!

The highlight is,

  1. it augments both image and b-box!!!
  2. it only use cv2 & numpy, means it could be used simply without any other awful packages!!!
  3. it is an online transformer!!!

It contains methods of:

  1. Random HSV augmentation
  2. Random Cropping augmentation
  3. Random Flipping augmentation
  4. Random Noise augmentation
  5. Random rotation or translation augmentation

All the methods can adjust abundant arguments in the constructed function of class VocAug.voc_aug.

Here are some visualized examples:

(click to enlarge)

e.g. #1 e.g. #2
eg1 eg2

More

This script was created when I was writing YOLOv1 object detectin algorithm for learning and entertainment. See more details at https://github.com/BestAnHongjun/YOLOv1-pytorch

Quick Start

1. Download this repo.

git clone https://github.com/BestAnHongjun/VOC-Augmentation.git

or you can download the zip file directly.

2. Enter project directory

cd VOC-Augmentation

3. Install the requirements

pip install -r requirements.txt

For some machines with mixed environments, you need to use pip3 but not pip.

Or you can install the requirements by hand. The default version is ok.

pip install numpy
pip install opencv-python
pip install opencv-contrib-python
pip install matplotlib

4.Create your own project directory

Create your own project directory, then copy the VocAug directory to yours. Or you can use this directory directly.

5. Create your own demo.py file

Or you can use my demo.py directly.

Thus, you should have a project directory with structure like this:

Project_Dir
  |- VocAug (dir)
  |- demo.py

Open your demo.py.

First, import some system packages.

import os
import matplotlib.pyplot as plt

Second, import my VocAug module in your project directory.

from VocAug.voc_aug import voc_aug
from VocAug.transform.voc2vdict import voc2vdict
from VocAug.utils.viz_bbox import viz_vdict

Third, Create two transformer.

voc2vdict_transformer = voc2vdict()
augmentation_transformer = voc_aug()

For the class voc2vdict, when you call its instance with args of xml_file_path and image_file_path, it can read the xml file and the image file and then convert them to VOC-format-dict, represented by vdict.

What is vdict? It is a python dict, which has a structure like:

vdict = {
    "image": numpy.array([[[....]]]),   # Cv2 image Mat. (Shape:[h, w, 3], RGB format)
    "filename": 000048,                 # filename without suffix
    "objects": [{                       # A list of dicts representing b-boxes
        "class_name": "house",
        "class_id": 2,                  # index of self.class_list
        "bbox": (x_min, y_min, x_max, y_max)
    }, {
        ...
    }]
}

For the class voc_aug, when you call its instance by args of vdict, it can augment both image and bbox of the vdict, then return a vdict augmented.

It will randomly use augmentation methods include:

  1. Random HSV augmentation
  2. Random Cropping augmentation
  3. Random Flipping augmentation
  4. Random Noise augmentation
  5. Random rotation or translation augmentation

Then, let's augment the vdict.

# prepare the xml-file-path and the image-file-path
filename = "000007"
file_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "dataset")
xml_file_path = os.path.join(file_dir, "Annotations", "{}.xml".format(filename))
image_file_path = os.path.join(file_dir, "JPEGImages", "{}.jpg".format(filename))

# Firstly convert the VOC format xml&image path to VOC-dict(vdict), then augment it.
src_vdict = voc2vdict_transformer(xml_file_path, image_file_path)
image_aug_vdict = augmentation_transformer(src_vdict)

The 000007.jpg and 000007.xml is in the dataset directory under Annotations and JPEGImages separately.

Then you can visualize the vdict. I have prepare a tool for you. That is viz_vdict function in VocAug.utils.viz_bbox module. It will return you a cv2 image when you input a vdict into it.

You can use it like:

image_src = src_vdict.get("image")
image_src_with_bbox = viz_vdict(src_vdict)

image_aug = image_aug_vdict.get("image")
image_aug_with_bbox = viz_vdict(image_aug_vdict)

Visualize them by matplotlib.

plt.figure(figsize=(15, 10))
plt.subplot(2, 2, 1)
plt.title("src")
plt.imshow(image_src)
plt.subplot(2, 2, 3)
plt.title("src_bbox")
plt.imshow(image_src_with_bbox)
plt.subplot(2, 2, 2)
plt.title("aug")
plt.imshow(image_aug)
plt.subplot(2, 2, 4)
plt.title("aug_bbox")
plt.imshow(image_aug_with_bbox)
plt.show()

Then you will get a random result like this. eg1

For more detail see demo.py .

Detail of Algorithm

I am writing this part...

Owner
Coder.AN
Researcher, CoTAI Lab, Dalian Maritime University. Focus on Computer Vision, Moblie Vision, and Machine Learning. Contact me at
Coder.AN
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"

Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our

Julian Rodemann 2 Mar 19, 2022
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022
ML models and internal tensors 3D visualizer

The free Zetane Viewer is a tool to help understand and accelerate discovery in machine learning and artificial neural networks. It can be used to ope

Zetane Systems 787 Dec 30, 2022
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022