DAN: Unfolding the Alternating Optimization for Blind Super Resolution

Overview

DAN-Basd-on-Openmmlab

DAN: Unfolding the Alternating Optimization for Blind Super Resolution

We reproduce DAN via mmediting based on open-sourced code.

Requirements

  • PyTorch >= 1.3
  • mmediting >= 0.9

DataSets

We use DIV2K and Flickr2K as our training datasets. For evaluation of Setting 2, we use DIV2KRK datasets,

Usages

How to run this repo: copy the file to the mmediting workspace and run the program directly based on the commands in mmediting

  1. Copy files to MMEditing workspace.
cd DAN-Basd-on-Openmmlab/
mv ./mmedit/models/restorers/dan.py ${mmediting_workspace}/mmedit/models/restorers/
mv ./mmedit/models/backbones/sr_backbones/dan_net.py ${mmediting_workspace}/mmedit/models/backbones/sr_backbones/
mv ./mmedit/models/common/DANpreprocess.py ${mmediting_workspace}/mmedit/models/common
mv ./configs/restorers/dan ${mmediting_workspace}/configs/restorers/
mv ./tools/data/super-resolution/dan_datasets ${mmediting_workspace}/tools/data/super-resolution/
  1. Modify the configuration file as follows:
pca_matrix_path='${mmediting_workspace}/tools/data/super-resolution/div2k/pca_matrix/pca_aniso_matrix_x4.pth' # your pca_matrix path
# Training
gt_folder='${dataset_workspace}/dataset/DF2K_train_HR_sub' # your train data path
# Testing
lq_folder='${dataset_workspace}/dataset/DIV2KRK/lr_x4' # your test data LR path
gt_folder='${dataset_workspace}/dataset/DIV2KRK/gt' # your test data HR path
  1. Add script to init file, as follows:
  • modify the mmedit/models/backbones/sr_backbones/__init__.py:
from .dan_net import DAN
# add DAN into __all__ list.
  • modify the mmedit/models/commons/__init__.py:
from .dan_preprocess import SRMDPreprocessing
# add SRMDreprocessing into __all__ list.
  • modify the mmedit/models/restorers/__init__.py:
from .dan import DAN
# add DAN into __all__ list.
  1. Training/Test

Before using it, please download and process the dataset and set the path in the configuration file.

  • Train
# Single GPU
python tools/train.py configs/restorers/dan/dan_setting2.py --work_dir ${YOUR_WORK_DIR}

# Multiple GPUs
./tools/dist_train.sh configs/restorers/dan/dan_setting2.py ${GPU_NUM} --work_dir ${YOUR_WORK_DIR}
  • Test
# Single GPU
python tools/test.py configs/restorers/dan/dan_setting2.py ${CHECKPOINT_FILE} [--metrics ${METRICS}] [--out ${RESULT_FILE}]

# Multiple GPUs
./tools/dist_test.sh configs/restorers/dan/dan_setting2.py ${CHECKPOINT_FILE} ${GPU_NUM} [--metrics ${METRICS}] [--out ${RESULT_FILE}]

Result

DIV2KRK

The passwds of download links are all 'ta2o'

Method scale Datasets PSNR Download
DAN x4 DIV2KRK 27.41 model / test_pkl

Owner
AlexZou
AlexZou
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

LEI TAI 111 Dec 08, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments

COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment

imperial-qore 39 Dec 25, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

🌟 HNSW + PostgreSQL Indexer HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework. It combines the

Jina AI 25 Oct 14, 2022
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
Dataset for the Research2Clinics @ NeurIPS 2021 Paper: What Do You See in this Patient? Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.

Non-Metric Space Library (NMSLIB) Important Notes NMSLIB is generic but fast, see the results of ANN benchmarks. A standalone implementation of our fa

2.9k Jan 04, 2023
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have

Mitesh Puthran 965 Dec 24, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022