*ObjDetApp* deploys a pytorch model for object detection ____ _ _ _____ _ / __ \| | (_) __ \ | | /\ | | | | |__ _| | | | ___| |_ / \ _ __ _ __ | | | | '_ \| | | | |/ _ \ __| / /\ \ | '_ \| '_ \ | |__| | |_) | | |__| | __/ |_ / ____ \| |_) | |_) | \____/|_.__/| |_____/ \___|\__/_/ \_\ .__/| .__/ _/ | | | | | |__/ |_| |_| ==================================================================== CONTENTS *Contents* 1. Introduction .................... |Introduction| 2. Prerequisites ................... |Prerequisites| 3. Usage ........................... |Usage| 3.1 WebApp ..................... |WebAppUsage| 3.2 GUIApp ..................... |GUIAppUsage| 4. Credits ......................... |Credits| 5. License ......................... |License| ==================================================================== Section 1: Introduction *Introduction* This is a side project (or not qualified as a project) derived from a school assignment, which focuses on the deployment of a pytorch model for object detection, hence the name. The model's performance is really bad but this app doesn't focus on that anyway. You can help me perfect and package it by forking. App tested on Linux. ==================================================================== Section 2: Prerequisites *Prerequisites* Get trained *model_state_dict.pth* from https://drive.google.com/file/d/1oi8iIQGn0OFSRf44hWLI8kCbj5OrlkCy/view?usp=sharing and put it under this folder. > sudo apt install default-libmysqlclient-dev pip install -r requirements.txt npm install < ==================================================================== Section 3: Usage *Usage* WebApp:~ *WebAppUsage* Start backend server (Default port: 5000) > FLASK_ENV=development FLASK_APP=server.py flask run < Build (Default into build/) > npm run build < Serve the webpage (Default port: 5512) > npm run dev < GUIApp:~ *GUIAppUsage* > python gui.py < ==================================================================== Section 4: Credits *Credits* ObjDetApp wouldn't be possible without these wonderful projects. https://github.com/pallets/flask https://github.com/pytorch/pytorch Shout out to @sgrvinod for his great tutorial. https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Object-Detection/ ==================================================================== Section 5: License *License* Copyright © 2021 Will Chao. Distributed under the MIT license. ==================================================================== vim:tw=78:ts=8:ft=help:noet:nospell
*ObjDetApp* deploys a pytorch model for object detection
Overview
Multiple-Object Tracking with Transformer
TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training
PyTorch implementation for ACL 2021 paper "Maria: A Visual Experience Powered Conversational Agent".
Maria: A Visual Experience Powered Conversational Agent This repository is the Pytorch implementation of our paper "Maria: A Visual Experience Powered
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".
Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation
STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a
HybridNets: End-to-End Perception Network
HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"
Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E
Pytorch implementation of AREL
Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement
Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions
EMS-COLS-recourse Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions Folder structure: data folder contains raw an
Tutel MoE: An Optimized Mixture-of-Experts Implementation
Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2
Official Tensorflow implementation Open ! - Clova AI StarGAN v2 — Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video Timely handgun detection is a cr
This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"
Coresets via Bilevel Optimization This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" ht
MegEngine implementation of YOLOX
Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.
Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales
Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam
Supervised Contrastive Learning for Product Matching
Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”
DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon
Official repository of ICCV21 paper "Viewpoint Invariant Dense Matching for Visual Geolocalization"
Viewpoint Invariant Dense Matching for Visual Geolocalization: PyTorch implementation This is the implementation of the ICCV21 paper: G Berton, C. Mas
Research - dataset and code for 2016 paper Learning a Driving Simulator
the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra