*ObjDetApp* deploys a pytorch model for object detection
____ _ _ _____ _
/ __ \| | (_) __ \ | | /\
| | | | |__ _| | | | ___| |_ / \ _ __ _ __
| | | | '_ \| | | | |/ _ \ __| / /\ \ | '_ \| '_ \
| |__| | |_) | | |__| | __/ |_ / ____ \| |_) | |_) |
\____/|_.__/| |_____/ \___|\__/_/ \_\ .__/| .__/
_/ | | | | |
|__/ |_| |_|
====================================================================
CONTENTS *Contents*
1. Introduction .................... |Introduction|
2. Prerequisites ................... |Prerequisites|
3. Usage ........................... |Usage|
3.1 WebApp ..................... |WebAppUsage|
3.2 GUIApp ..................... |GUIAppUsage|
4. Credits ......................... |Credits|
5. License ......................... |License|
====================================================================
Section 1: Introduction *Introduction*
This is a side project (or not qualified as a project) derived from a school
assignment, which focuses on the deployment of a pytorch model for object
detection, hence the name.
The model's performance is really bad but this app doesn't focus on that anyway.
You can help me perfect and package it by forking.
App tested on Linux.
====================================================================
Section 2: Prerequisites *Prerequisites*
Get trained *model_state_dict.pth* from https://drive.google.com/file/d/1oi8iIQGn0OFSRf44hWLI8kCbj5OrlkCy/view?usp=sharing and put it under this folder.
>
sudo apt install default-libmysqlclient-dev
pip install -r requirements.txt
npm install
<
====================================================================
Section 3: Usage *Usage*
WebApp:~
*WebAppUsage*
Start backend server (Default port: 5000)
>
FLASK_ENV=development FLASK_APP=server.py flask run
<
Build (Default into build/)
>
npm run build
<
Serve the webpage (Default port: 5512)
>
npm run dev
<
GUIApp:~
*GUIAppUsage*
>
python gui.py
<
====================================================================
Section 4: Credits *Credits*
ObjDetApp wouldn't be possible without these wonderful projects.
https://github.com/pallets/flask
https://github.com/pytorch/pytorch
Shout out to @sgrvinod for his great tutorial.
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Object-Detection/
====================================================================
Section 5: License *License*
Copyright © 2021 Will Chao. Distributed under the MIT license.
====================================================================
vim:tw=78:ts=8:ft=help:noet:nospell
*ObjDetApp* deploys a pytorch model for object detection
Overview
Reinforcement Learning via Supervised Learning
Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.
appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP
[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)
Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.
Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look
PyTorch reimplementation of Diffusion Models
PyTorch pretrained Diffusion Models A PyTorch reimplementation of Denoising Diffusion Probabilistic Models with checkpoints converted from the author'
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e
Sample and Computation Redistribution for Efficient Face Detection
Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti
yolov5 deepsort 行人 车辆 跟踪 检测 计数
yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications
BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme
RepVGG: Making VGG-style ConvNets Great Again
This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again
Pre-trained NFNets with 99% of the accuracy of the official paper
NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale
Object-aware Contrastive Learning for Debiased Scene Representation
Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo
This repository contains the reference implementation for our proposed Convolutional CRFs.
ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-
A library for Deep Learning Implementations and utils
deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip
Explaining neural decisions contrastively to alternative decisions.
Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about
The 2nd Version Of Slothybot
SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic