Datapane is the easiest way to create data science reports from Python.

Overview

Datapane

Datapane Teams | Documentation | API Docs | Changelog | Twitter | Blog

Pip Downloads Latest release Conda (channel only)

Share interactive plots and data in 3 lines of Python.

Datapane is a Python library for building interactive reports for your end-users in seconds.

Import our library into your existing script/notebook and build reports from pandas Dataframes, plots from Python viz libraries, Markdown, as well as data exploration and layout components.

Export your reports as standalone HTML documents, or share and embed them via our free hosted platform.

Getting Started

Installing Datapane

The best way to install Datapane is through pip or conda.

pip

$ pip3 install -U datapane
$ datapane hello-world

conda

$ conda install -c conda-forge "datapane>=0.12.0"
$ datapane hello-world

Datapane also works well in hosted Jupyter environments such as Colab or Binder, where you can install as follows:

!pip3 install --quiet datapane
!datapane signup

Explainer Video

Datapane.Public.Tutorial.mp4

Hello world

Let's say you wanted to create a report with an interactive plot and table viewer:

import altair as alt
from vega_datasets import data
import datapane as dp

source = data.cars()

plot1 = alt.Chart(source).mark_circle(size=60).encode(
  x='Horsepower',
  y='Miles_per_Gallon',
  color='Origin',
  tooltip=['Name', 'Origin', 'Horsepower', 'Miles_per_Gallon']
).interactive()

dp.Report(
    dp.Text("## Hello world!"),
    dp.Plot(plot1),
    dp.DataTable(source)
).save(path="Hello_world.html")

This will package a standalone HTML document that looks as follows:

Simple Datapane report example with text, plot and table

Your users can scroll & zoom on the chart, filter and download the tabular data.

Advanced Layout Options

Datapane is great for presenting complex data and provides many components for creating advanced interactive layouts. Let's you need to write a technical document:

import altair as alt
from vega_datasets import data
import datapane as dp

source = data.cars()
plot1 = alt.Chart(source).mark_circle(size=60).encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
    tooltip=['Name', 'Origin', 'Horsepower', 'Miles_per_Gallon']
).interactive()

dp.Report(
    dp.Page(title="Charts and analysis",
            blocks=[
                dp.Formula("x^2 + y^2 = z^2"),
                dp.Group(
                    dp.BigNumber(
                        heading="Number of percentage points",
                        value="84%",
                        change="2%",
                        is_upward_change=True
                    ),
                    dp.BigNumber(
                        heading="Simple Statistic",
                        value=100
                    ), columns=2,
                ),
                dp.Select(blocks=[
                    dp.Plot(plot1, label="Plot"),
                    dp.HTML('''<iframe width="560" height="315" src="https://www.youtube.com/embed/dQw4w9WgXcQ" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>''', label="Video")
                ]),
            ]),
    dp.Page(title="Dataset", blocks=[
            dp.DataTable(source)
    ])
).save(path="Complex_layout.html", open=True)

Layout blocks like dp.Select, dp.Group and dp.Page allow you to highlight key points without sacrificing detail, while content blocks like dp.HTML and dp.Formula (LaTeX) can enrich your report. The final result looks like this:

Complex Datapane report example

Check out the full list of blocks in our documentation.

Sharing Reports

Sign up for a free account

In addition to saving documents locally, you can host, share and embed reports via Datapane Studio.

To get your free API key, run the following command in your terminal to sign up via email/OAuth:

$ datapane signup

If you're using Jupyter, run !datapane signup instead.

Next, in your Python notebook or script simply change the save function to upload on your report:

dp.Report(
 ...
#).save(path="hello_world.html")
).upload(name="Hello world")

Your Studio account comes with the following:

  • Unlimited public reports - great for embedding into places like Medium, Reddit, or your own website (see here)
  • 5 private reports - share these via email within your organization

Featured Examples

Here a few samples of the top reports created by the Datapane community. To see more, check out our gallery section.

Teams

Datapane Teams is our plan for teams, which adds the following features on top of our open-source and Studio plans:

  • Private domain and organizational workspace
  • Multiple projects
  • Client-sharing functionality
  • Unlimited Datapane Apps
  • Custom App packages and environments
  • Secure Warehouse & API Integration
  • File and Dataset APIs
  • Private Slack or Teams support

Datapane Teams is offered as both a managed SaaS service and an on-prem install. For more information, see the documentation. You can find pricing here.

Next Steps

Analytics

By default, the Datapane Python library collects error reports and usage telemetry. This is used by us to help make the product better and to fix bugs. If you would like to disable this, simply create a file called no_analytics in your datapane config directory, e.g.

Linux

$ mkdir -p ~/.config/datapane && touch ~/.config/datapane/no_analytics

macOS

$ mkdir -p ~/Library/Application\ Data/datapane && touch ~/Library/Application\ Data/no_analytics

Windows (PowerShell)

PS> mkdir ~/AppData/Roaming/datapane -ea 0
PS> ni ~/AppData/Roaming/datapane/no_analytics -ea 0

You may need to try ~/AppData/Local instead of ~/AppData/Roaming on certain Windows configurations depending on the type of your user-account.

Joining the community

Looking to get answers to questions or engage with us and the wider community? Check out our GitHub Discussions board.

Submit feature requests, issues, and bug reports on this GitHub repo.

Open-source, not open-contribution

Datapane is currently closed to external code contributions. However, we are tremendously grateful to the community for any feature requests, ideas, discussions, and bug reports.

Owner
Datapane
Create and share interactive reports from Python
Datapane
ipyvizzu - Jupyter notebook integration of Vizzu

ipyvizzu - Jupyter notebook integration of Vizzu. Tutorial · Examples · Repository About The Project ipyvizzu is the Jupyter Notebook integration of V

Vizzu 729 Jan 08, 2023
A library for bridging Python and HTML/Javascript (via Svelte) for creating interactive visualizations

A library for bridging Python and HTML/Javascript (via Svelte) for creating interactive visualizations

Anthropic 98 Dec 27, 2022
This is a super simple visualization toolbox (script) for transformer attention visualization ✌

Trans_attention_vis This is a super simple visualization toolbox (script) for transformer attention visualization ✌ 1. How to prepare your attention m

Mingyu Wang 3 Jul 09, 2022
HiPlot makes understanding high dimensional data easy

HiPlot - High dimensional Interactive Plotting HiPlot is a lightweight interactive visualization tool to help AI researchers discover correlations and

Facebook Research 2.4k Jan 04, 2023
Draw tree diagrams from indented text input

Draw tree diagrams This repository contains two very different scripts to produce hierarchical tree diagrams like this one: $ ./classtree.py collectio

Luciano Ramalho 8 Dec 14, 2022
NorthPitch is a python soccer plotting library that sits on top of Matplotlib

NorthPitch is a python soccer plotting library that sits on top of Matplotlib.

Devin Pleuler 30 Feb 22, 2022
A python script to visualise explain plans as a graph using graphviz

README Needs to be improved Prerequisites Need to have graphiz installed on the machine. Refer to https://graphviz.readthedocs.io/en/stable/manual.htm

Edward Mallia 1 Sep 28, 2021
Movie recommendation using RASA, TigerGraph

Demo run: The below video will highlight the runtime of this setup and some sample real-time conversations using the power of RASA + TigerGraph, Steps

Sudha Vijayakumar 3 Sep 10, 2022
Tools for exploratory data analysis in Python

Dora Exploratory data analysis toolkit for Python. Contents Summary Setup Usage Reading Data & Configuration Cleaning Feature Selection & Extraction V

Nathan Epstein 599 Dec 25, 2022
Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordcloud packages

Wikipedia WordCloud App Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordclou

Siva Prakash 5 Jan 02, 2022
NumPy and Pandas interface to Big Data

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte

Blaze 3.1k Jan 01, 2023
The windML framework provides an easy-to-use access to wind data sources within the Python world, building upon numpy, scipy, sklearn, and matplotlib. Renewable Wind Energy, Forecasting, Prediction

windml Build status : The importance of wind in smart grids with a large number of renewable energy resources is increasing. With the growing infrastr

Computational Intelligence Group 125 Dec 24, 2022
Homework 2: Matplotlib and Data Visualization

Homework 2: Matplotlib and Data Visualization Overview These data visualizations were created for my introductory computer science course using Python

Sophia Huang 12 Oct 20, 2022
Some useful extensions for Matplotlib.

mplx Some useful extensions for Matplotlib. Contour plots for functions with discontinuities plt.contour mplx.contour(max_jump=1.0) Matplotlib has pro

Nico Schlömer 519 Dec 30, 2022
3D rendered visualization of the austrian monuments registry

Visualization of the Austrian Monuments Visualization of the monument landscape of the austrian monuments registry (Bundesdenkmalamt Denkmalverzeichni

Nikolai Janakiev 3 Oct 24, 2019
A high performance implementation of HDBSCAN clustering. http://hdbscan.readthedocs.io/en/latest/

HDBSCAN Now a part of scikit-learn-contrib HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over va

Leland McInnes 91 Dec 29, 2022
Generating interfaces(CLI, Qt GUI, Dash web app) from a Python function.

oneFace is a Python library for automatically generating multiple interfaces(CLI, GUI, WebGUI) from a callable Python object. oneFace is an easy way t

NaNg 31 Oct 21, 2022
GitHubPoster - Make everything a GitHub svg poster

GitHubPoster Make everything a GitHub svg poster 支持 Strava 开心词场 扇贝 Nintendo Switch GPX 多邻国 Issue

yihong 1.3k Jan 02, 2023
Script to create an animated data visualisation for categorical timeseries data - GIF choropleth map with annotations.

choropleth_ldn Simple script to create a chloropleth map of London with categorical timeseries data. The script in main.py creates a gif of the most f

1 Oct 07, 2021
a robust room presence solution for home automation with nearly no false negatives

Argos Room Presence This project builds a room presence solution on top of Argos. Using just a cheap raspberry pi zero w (plus an attached pi camera,

Angad Singh 46 Sep 18, 2022