A library for bridging Python and HTML/Javascript (via Svelte) for creating interactive visualizations

Overview

PySvelte

THIS LIBRARY IS TOTALLY UNSUPPORTED. IT IS PROVIDED AS IS, AS AN EXAMPLE OF ONE WAY TO SOLVE A PROBLEM. MANY FEATURES WILL NOT WORK WITHOUT YOU WRITING YOUR OWN config.py FILE.

If we want to understand neural networks, it's essential that we have effective ways of getting lots of information from the innards of those models into a readable form. Often, this will be a data visualization.

Unfortunately, there's an awkward mismatch between workflows for deep learning research and data visualization. The vast majority of deep learning research is done in Python, where sophisticated libraries make it easy to express neural networks and train them in distributed setups with hardware accelerators. Meanwhile, web standards (HTML/Javascript/CSS) provide a rich environment for data visualization. Trying to use Javascript to train models, or Python for data visualization, takes on a very significant handicap. One wants to use the best tools for each task. But simultaneously working in two ecosystems can also be very challenging.

This library is an attempt at bridging these ecosystems. It encourages a very opinionated workflow of how to integrate visualization into the deep learning research workflow. Our design goals include:

  • To make it easy to create bespoke, custom visualizations based on web standards and Svelte, and use them in Python.
  • To encourage visualizations to be modular and reusable.
  • To make it easy to publish persistent visualizations to standalone, sharable pages.
  • To allow researchers who don't know anything about web technologies to use visualizations their colleagues create.

Set Up

Many features in this library (such as publishing visualiations to GCS/S3/AZ buckets), require you to write several functions specific to your own research setup in config.py.

Basic use

The basic idea is that we create a Svelte component inside the src/ folder, say src/Hello.svelte:

<script>
    export let name;
script>
<h2>Hello {name}!h2>

This visualization automatically becomes available in Python as pysvelte.Hello(). This includes tab completion for argument names.

We can now use it as follows.

import pysvelte
pysvelte.Hello(name="World")

(A few details: (1) This should work without directly running any npm build process; pysvelte will trigger necessary builds for you from Python, in order to make visualizations easily usable by those without web expertise. (2) Argument names are mandatory, since mapping argument names based on order would be very fragile as the svelte component is edited. (3) In addition to objects with clear javascript analogues, NumPy arrays can be passed into components and will be exposed on the javascript side as SciJs NdArrays.)

In a jupyter or colab notebook, the visualization should automatically display if its the last thing computed in a cell. One can also use .show() to show items that aren't the last line:

pysvelte.Hello(name="Alice").show()
pysvelte.Hello(name="Bob").show()

Once you configure config.py you should also be able to use .publish() to publish your visualizations and easily share them. By default, new published visualizations can also be shared on slack to make it easier for your colleagues to discover them, and for convenient sharing when pair programming.

pysvelte.Hello(name="World").publish("~~/hello_world.html")

The objects returned when you use a component are pysvelte.Html() objects, which can be added together. This is useful to create pages.

My Hellos Page

") html += pysvelte.Hello(name="Alice") html += pysvelte.Hello(name="Bob") html.publish("~~/hellos.html")">
html = pysvelte.Html("

My Hellos Page

"
) html += pysvelte.Hello(name="Alice") html += pysvelte.Hello(name="Bob") html.publish("~~/hellos.html")

One final feature we want to highlight is that Svelte components can have companion Python files, like this src/Hello.py. This can be used to add doc strings (which appear in tab completion), argument type signatures, do Python-side validation of data for easier debugging, and even modify data before it is passed to Javascript.

0, "Name can not be empty." assert name[0] == name[0].upper(), "Name must be capitalized."">
def init(name: str):
    """A visualization which says hello to a given name."""
    assert len(name) > 0, "Name can not be empty."
    assert name[0] == name[0].upper(), "Name must be capitalized."

Example component

src/AttentionMulti.svelte contains an example of a component we've developed internally which we use to to visualize attention patterns from Transformer self-attention blocks. You can view a rendered version of (a variant of) this component in our recent paper.

See src/AttentionMulti.py for documentation.

Learn More

On the javascript side, the major things to understand are:

  • Web standards (SVG, Canvas, CSS grid, etc)
  • Svelte
  • ndarray (for JS versions of numpy arrays)

D3 is also helpful!

License

Copyright 2021 Anthropic

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Owner
Anthropic
Anthropic
Movies-chart - A CLI app gets the top 250 movies of all time from imdb.com and the top 100 movies from rottentomatoes.com

movies-chart This CLI app gets the top 250 movies of all time from imdb.com and

3 Feb 17, 2022
Statistics and Visualization of acceptance rate, main keyword of CVPR 2021 accepted papers for the main Computer Vision conference (CVPR)

Statistics and Visualization of acceptance rate, main keyword of CVPR 2021 accepted papers for the main Computer Vision conference (CVPR)

Hoseong Lee 78 Aug 23, 2022
Blender addon that creates a temporary window of any type from the 3D View.

CreateTempWindow2.8 Blender addon that creates a temporary window of any type from the 3D View. Features Can the following window types: 3D View Graph

3 Nov 27, 2022
Eulera Dashboard is an easy and intuitive way to get a quick feel of what’s happening on the world’s market.

an easy and intuitive way to get a quick feel of what’s happening on the world’s market ! Eulera dashboard is a tool allows you to monitor historical

Salah Eddine LABIAD 4 Nov 25, 2022
Plot-configurations for scientific publications, purely based on matplotlib

TUEplots Plot-configurations for scientific publications, purely based on matplotlib. Usage Please have a look at the examples in the example/ directo

Nicholas Krämer 487 Jan 08, 2023
Piglet-shaders - PoC of custom shaders for Piglet

Piglet custom shader PoC This is a PoC for compiling Piglet fragment shaders usi

6 Mar 10, 2022
Gallery of applications built using bqplot and widget libraries like ipywidgets, ipydatagrid etc.

bqplot Gallery This is a gallery of bqplot examples. View the gallery at https://bqplot.github.io/bqplot-gallery. Contributing new examples Clone this

8 Aug 23, 2022
100 Days of Code The Complete Python Pro Bootcamp for 2022

100-Day-With-Python 100 Days of Code - The Complete Python Pro Bootcamp for 2022. In this course, I spend with python language over 100 days, and I up

Rajdip Das 8 Jun 22, 2022
A guide for using Bootstrap 5 classes in Dash Bootstrap Components V1

dash-bootstrap-cheatsheet This handy interactive cheatsheet makes it easy to use the Bootstrap 5 classes with your Dash app made with the latest versi

10 Dec 22, 2022
CLAHE Contrast Limited Adaptive Histogram Equalization

A simple code to process images using contrast limited adaptive histogram equalization. Image processing is becoming a major part of data processig.

Happy N. Monday 4 May 18, 2022
Simple plotting for Python. Python wrapper for D3xter - render charts in the browser with simple Python syntax.

PyDexter Simple plotting for Python. Python wrapper for D3xter - render charts in the browser with simple Python syntax. Setup $ pip install PyDexter

D3xter 31 Mar 06, 2021
Generate a roam research like Network Graph view from your Notion pages.

Notion Graph View Export Notion pages to a Roam Research like graph view.

Steve Sun 214 Jan 07, 2023
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
Visualization Data Drug in thailand during 2014 to 2020

Visualization Data Drug in thailand during 2014 to 2020 Data sorce from ข้อมูลเปิดภาครัฐ สำนักงาน ป.ป.ส Inttroducing program Using tkinter module for

Narongkorn 1 Jan 05, 2022
A Python package for caclulations and visualizations in geological sciences.

geo_calcs A Python package for caclulations and visualizations in geological sciences. Free software: MIT license Documentation: https://geo-calcs.rea

Drew Heasman 1 Jul 12, 2022
Make sankey, alluvial and sankey bump plots in ggplot

The goal of ggsankey is to make beautiful sankey, alluvial and sankey bump plots in ggplot2

David Sjoberg 156 Jan 03, 2023
visualize_ML is a python package made to visualize some of the steps involved while dealing with a Machine Learning problem

visualize_ML visualize_ML is a python package made to visualize some of the steps involved while dealing with a Machine Learning problem. It is build

Ayush Singh 164 Dec 12, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 111 Jan 03, 2023
Script to create an animated data visualisation for categorical timeseries data - GIF choropleth map with annotations.

choropleth_ldn Simple script to create a chloropleth map of London with categorical timeseries data. The script in main.py creates a gif of the most f

1 Oct 07, 2021
Process dataframe in a easily way.

Popanda Written by Shengxuan Wang at OSU. Used for processing dataframe, especially for machine learning. The name is from "Po" in the movie Kung Fu P

ShawnWang 1 Dec 24, 2021