Generating interfaces(CLI, Qt GUI, Dash web app) from a Python function.

Overview

oneFace is a Python library for automatically generating multiple interfaces(CLI, GUI, WebGUI) from a callable Python object.

Build Status codecov Documentation Install with PyPi

oneFace is an easy way to create interfaces in Python, just decorate your function and mark the type and range of the arguments:

from oneface import one, Arg

@one
def bmi(name: Arg(str),
        height: Arg(float, [100, 250]) = 160,
        weight: Arg(float, [0, 300]) = 50.0):
    BMI = weight / (height / 100) ** 2
    print(f"Hi {name}. Your BMI is: {BMI}")
    return BMI


# run cli
bmi.cli()
# or run qt_gui
bmi.qt_gui()
# or run dash web app
bmi.dash_app()

These code will generate the following interfaces:

CLI Qt Dash
CLI Qt Dash

Features

  • Generate CLI, Qt GUI, Dash Web app from a python function.
  • Automatically check the type and range of input parameters and pretty print them.
  • Easy extension of parameter types and GUI widgets.

Detail usage see the documentation and pythondig.

Installation

To install oneFace with complete dependency:

$ pip install oneface[all]

Or install with just qt or dash dependency:

$ pip install oneface[qt]  # qt
$ pip install oneface[dash]  # dash
Comments
  • Wrap CLI

    Wrap CLI

    Wrap a CLI program to a GUI/Web interface app.

    Using a .yaml as config to specify the arguments:

    # open_browser_oneface.yaml
    name: open_browser
    
    command: python -m webbrowser {is_tab} {url} 
    
    arguments:
    
      is_tab:
        type: bool
        true_content: "-t"
        false_content: ""
    
      url:
        type: str
    

    Launch the app with:

    $ python -m onface.wrap_cli run open_browser_oneface.yaml qt_gui
    

    It will get a GUI app.

    enhancement 
    opened by Nanguage 1
  • A Thanks Message

    A Thanks Message

    Hello, i am Onur, i am a CTO of a community that develop Blockchain based Decentralized Application Network. This repository have a very good idea. All contributor of this project and me should develop this project and use in the other project. Let's not stop developing.

    Onur Atakan ULUSOY - CTO of Decentra Network Community

    opened by onuratakan 1
  • Implicit Arg convert from Python builtin types

    Implicit Arg convert from Python builtin types

    Allow type annotation with python builtin types, for example:

    from oneface import one, Arg
    
    @one
    def bmi(name: str,
            height: (float, [100, 250]) = 160,
            weight: (float, [0, 300]) = 50.0):
        BMI = weight / (height / 100) ** 2
        print(f"Hi {name}. Your BMI is: {BMI}")
        return BMI
    
    # run cli
    bmi.cli()
    

    Let the annotation automatically convert to Arg when parse the parameters.

    enhancement 
    opened by Nanguage 1
  • Integrate generated qt window to a Qt app.

    Integrate generated qt window to a Qt app.

    import sys
    from oneface.qt import qt_window
    from oneface import one
    from qtpy import QtWidgets
    
    app = QtWidgets.QApplication([])
    
    
    @qt_window
    @one
    def add(a: int, b: int):
        return a + b
    
    @qt_window
    @one
    def mul(a: int, b: int):
        return a * b
    
    
    main_window = QtWidgets.QWidget()
    main_window.setWindowTitle("MyApp")
    main_window.setFixedSize(200, 100)
    layout = QtWidgets.QVBoxLayout(main_window)
    layout.addWidget(QtWidgets.QLabel("Apps:"))
    btn_open_add = QtWidgets.QPushButton("add")
    btn_open_mul = QtWidgets.QPushButton("mul")
    btn_open_add.clicked.connect(add.show)
    btn_open_mul.clicked.connect(mul.show)
    layout.addWidget(btn_open_add)
    layout.addWidget(btn_open_mul)
    main_window.show()
    
    sys.exit(app.exec())
    
    enhancement 
    opened by Nanguage 0
  • Dash: the 'plotly' result_result_type

    Dash: the 'plotly' result_result_type

    Allow render the result with ploty. The wraped function return a plotly figure object:

    from oneface import one, Arg
    import plotly.express as px
    import numpy as np
    
    @one
    def draw_random_points(n: Arg[int, [1, 10000]] = 100):
        x, y = np.random.random(n), np.random.random(n)
        fig = px.scatter(x=x, y=y)
        return fig
    
    draw_random_points.dash_app(
        result_show_type='plotly',
        debug=True)
    
    enhancement 
    opened by Nanguage 0
  • Flask integration of dash app

    Flask integration of dash app

    Embeding the generated dash app as a route of flask server.

    # demo_flask_integrate.py
    from flask import Flask
    from oneface.dash_app import flask_route
    from oneface.core import one
    
    server = Flask("test_dash_app")
    
    @flask_route(server, "/add")
    @one
    def add(a: int, b: int) -> int:
        return a + b
    
    @flask_route(server, "/mul")
    @one
    def mul(a: int, b: int) -> int:
        return a * b
    
    server.run("127.0.0.1", 8088)
    

    Run this will launch a flask server support run multiple dash app from different route.

    References:

    • https://blog.finxter.com/dash-flask/
    enhancement 
    opened by Nanguage 0
  • Define custom dash commpont to support complex input type.

    Define custom dash commpont to support complex input type.

    For example:

    from oneface import one, Arg
    from oneface.dash_app import App, InputItem
    from dash import dcc, html
    
    class Person:
        def __init__(self, name, age):
            self.name = name
            self.age = age
    
    
    def check_person_type(val, tp):
        return (
            isinstance(val, tp) and
            isinstance(val.name, str) and
            isinstance(val.age, int)
        )
    
    Arg.register_type_check(Person, check_person_type)
    Arg.register_range_check(Person, lambda val, range: range[0] <= val.age <= range[1])
    
    class PersonInputItem(InputItem):
        def get_input(self):
            if self.default:
                default_val = f"Person('{self.default.name}', {self.default.age})"
            else:
                default_val = ""
            return dcc.Input(
                placeholder="example: Person('age', 20)",
                type="text",
                value=default_val,
                style={
                    "width": "100%",
                    "height": "40px",
                    "margin": "5px",
                    "font-size": "20px",
                }
            )
    
    
    App.register_widget(Person, PersonInputItem)
    App.register_type_convert(Person, lambda s: eval(s))
    
    
    @one
    def print_person(person: Arg(Person, [0, 100]) = Person("Tom", 10)):
        print(f"{person.name} is {person.age} years old.")
    
    
    print_person.dash_app()
    
    

    This code using the serialized input Person, how to define a "Composite components" in dash to support Person input? Just like in Qt:

    image

    question 
    opened by Nanguage 0
Releases(0.1.9)
Personal IMDB Graphs with Bokeh

Personal IMDB Graphs with Bokeh Do you like watching movies and also rate all of them in IMDB? Would you like to look at your IMDB stats based on your

2 Dec 15, 2021
NorthPitch is a python soccer plotting library that sits on top of Matplotlib

NorthPitch is a python soccer plotting library that sits on top of Matplotlib.

Devin Pleuler 30 Feb 22, 2022
Investment and risk technologies maintained by Fortitudo Technologies.

Fortitudo Technologies Open Source This package allows you to freely explore open-source implementations of some of our fundamental technologies under

Fortitudo Technologies 11 Dec 14, 2022
📊📈 Serves up Pandas dataframes via the Django REST Framework for use in client-side (i.e. d3.js) visualizations and offline analysis (e.g. Excel)

📊📈 Serves up Pandas dataframes via the Django REST Framework for use in client-side (i.e. d3.js) visualizations and offline analysis (e.g. Excel)

wq framework 1.2k Jan 01, 2023
Extract data from ThousandEyes REST API and visualize it on your customized Grafana Dashboard.

ThousandEyes Grafana Dashboard Extract data from the ThousandEyes REST API and visualize it on your customized Grafana Dashboard. Deploy Grafana, Infl

Flo Pachinger 16 Nov 26, 2022
Scientific Visualization: Python + Matplotlib

An open access book on scientific visualization using python and matplotlib

Nicolas P. Rougier 8.6k Dec 31, 2022
Alternative layout visualizer for ZSA Moonlander keyboard

General info This is a keyboard layout visualizer for ZSA Moonlander keyboard (because I didn't find their Oryx or their training tool particularly us

10 Jul 19, 2022
A Python function that makes flower plots.

Flower plot A Python 3.9+ function that makes flower plots. Installation This package requires at least Python 3.9. pip install

Thomas Roder 4 Jun 12, 2022
A Python Library for Self Organizing Map (SOM)

SOMPY A Python Library for Self Organizing Map (SOM) As much as possible, the structure of SOM is similar to somtoolbox in Matlab. It has the followin

Vahid Moosavi 497 Dec 29, 2022
GitHub Stats Visualizations : Transparent

GitHub Stats Visualizations : Transparent Generate visualizations of GitHub user and repository statistics using GitHub Actions. ⚠️ Disclaimer The pro

YuanYap 7 Apr 05, 2022
Python & Julia port of codes in excellent R books

X4DS This repo is a collection of Python & Julia port of codes in the following excellent R books: An Introduction to Statistical Learning (ISLR) Stat

Gitony 5 Jun 21, 2022
:bowtie: Create a dashboard with python!

Installation | Documentation | Gitter Chat | Google Group Bowtie Introduction Bowtie is a library for writing dashboards in Python. No need to know we

Jacques Kvam 753 Dec 22, 2022
Some problems of SSLC ( High School ) before outputs and after outputs

Some problems of SSLC ( High School ) before outputs and after outputs 1] A Python program and its output (output1) while running the program is given

Fayas Noushad 3 Dec 01, 2021
Area-weighted venn-diagrams for Python/matplotlib

Venn diagram plotting routines for Python/Matplotlib Routines for plotting area-weighted two- and three-circle venn diagrams. Installation The simples

Konstantin Tretyakov 400 Dec 31, 2022
Interactive plotting for Pandas using Vega-Lite

pdvega: Vega-Lite plotting for Pandas Dataframes pdvega is a library that allows you to quickly create interactive Vega-Lite plots from Pandas datafra

Altair 342 Oct 26, 2022
Data Analysis: Data Visualization of Airlines

Data Analysis: Data Visualization of Airlines Anderson Cruz | London-UK | Linkedin | Nowa Capital Project: Traffic Airlines Airline Reporting Carrier

Anderson Cruz 1 Feb 10, 2022
Python package for hypergraph analysis and visualization.

The HyperNetX library provides classes and methods for the analysis and visualization of complex network data. HyperNetX uses data structures designed to represent set systems containing nested data

Pacific Northwest National Laboratory 304 Dec 27, 2022
cqMore is a CadQuery plugin based on CadQuery 2.1.

cqMore (under construction) cqMore is a CadQuery plugin based on CadQuery 2.1. Installation Please use conda to install CadQuery and its dependencies

Justin Lin 36 Dec 21, 2022
A simple script that displays pixel-based animation on GitHub Activity

GitHub Activity Animator This project contains a simple Javascript snippet that produces an animation on your GitHub activity tracker. The project als

16 Nov 15, 2021
Focus on Algorithm Design, Not on Data Wrangling

The dataTap Python library is the primary interface for using dataTap's rich data management tools. Create datasets, stream annotations, and analyze model performance all with one library.

Zensors 37 Nov 25, 2022