A high performance implementation of HDBSCAN clustering. http://hdbscan.readthedocs.io/en/latest/

Overview
PyPI Version Conda-forge Version Conda-forge downloads License Travis Build Status Test Coverage Docs JOSS article

HDBSCAN

Now a part of scikit-learn-contrib

HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates the result to find a clustering that gives the best stability over epsilon. This allows HDBSCAN to find clusters of varying densities (unlike DBSCAN), and be more robust to parameter selection.

In practice this means that HDBSCAN returns a good clustering straight away with little or no parameter tuning -- and the primary parameter, minimum cluster size, is intuitive and easy to select.

HDBSCAN is ideal for exploratory data analysis; it's a fast and robust algorithm that you can trust to return meaningful clusters (if there are any).

Based on the paper:
R. Campello, D. Moulavi, and J. Sander, Density-Based Clustering Based on Hierarchical Density Estimates In: Advances in Knowledge Discovery and Data Mining, Springer, pp 160-172. 2013

Documentation, including tutorials, are available on ReadTheDocs at http://hdbscan.readthedocs.io/en/latest/ .

Notebooks comparing HDBSCAN to other clustering algorithms, explaining how HDBSCAN works and comparing performance with other python clustering implementations are available.

How to use HDBSCAN

The hdbscan package inherits from sklearn classes, and thus drops in neatly next to other sklearn clusterers with an identical calling API. Similarly it supports input in a variety of formats: an array (or pandas dataframe, or sparse matrix) of shape (num_samples x num_features); an array (or sparse matrix) giving a distance matrix between samples.

import hdbscan
from sklearn.datasets import make_blobs

data, _ = make_blobs(1000)

clusterer = hdbscan.HDBSCAN(min_cluster_size=10)
cluster_labels = clusterer.fit_predict(data)

Performance

Significant effort has been put into making the hdbscan implementation as fast as possible. It is orders of magnitude faster than the reference implementation in Java, and is currently faster than highly optimized single linkage implementations in C and C++. version 0.7 performance can be seen in this notebook . In particular performance on low dimensional data is better than sklearn's DBSCAN , and via support for caching with joblib, re-clustering with different parameters can be almost free.

Additional functionality

The hdbscan package comes equipped with visualization tools to help you understand your clustering results. After fitting data the clusterer object has attributes for:

  • The condensed cluster hierarchy
  • The robust single linkage cluster hierarchy
  • The reachability distance minimal spanning tree

All of which come equipped with methods for plotting and converting to Pandas or NetworkX for further analysis. See the notebook on how HDBSCAN works for examples and further details.

The clusterer objects also have an attribute providing cluster membership strengths, resulting in optional soft clustering (and no further compute expense). Finally each cluster also receives a persistence score giving the stability of the cluster over the range of distance scales present in the data. This provides a measure of the relative strength of clusters.

Outlier Detection

The HDBSCAN clusterer objects also support the GLOSH outlier detection algorithm. After fitting the clusterer to data the outlier scores can be accessed via the outlier_scores_ attribute. The result is a vector of score values, one for each data point that was fit. Higher scores represent more outlier like objects. Selecting outliers via upper quantiles is often a good approach.

Based on the paper:
R.J.G.B. Campello, D. Moulavi, A. Zimek and J. Sander Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection, ACM Trans. on Knowledge Discovery from Data, Vol 10, 1 (July 2015), 1-51.

Robust single linkage

The hdbscan package also provides support for the robust single linkage clustering algorithm of Chaudhuri and Dasgupta. As with the HDBSCAN implementation this is a high performance version of the algorithm outperforming scipy's standard single linkage implementation. The robust single linkage hierarchy is available as an attribute of the robust single linkage clusterer, again with the ability to plot or export the hierarchy, and to extract flat clusterings at a given cut level and gamma value.

Example usage:

import hdbscan
from sklearn.datasets import make_blobs

data = make_blobs(1000)

clusterer = hdbscan.RobustSingleLinkage(cut=0.125, k=7)
cluster_labels = clusterer.fit_predict(data)
hierarchy = clusterer.cluster_hierarchy_
alt_labels = hierarchy.get_clusters(0.100, 5)
hierarchy.plot()
Based on the paper:
K. Chaudhuri and S. Dasgupta. "Rates of convergence for the cluster tree." In Advances in Neural Information Processing Systems, 2010.

Installing

Easiest install, if you have Anaconda (thanks to conda-forge which is awesome!):

conda install -c conda-forge hdbscan

PyPI install, presuming you have sklearn and all its requirements (numpy and scipy) installed:

pip install hdbscan

If pip is having difficulties pulling the dependencies then we'd suggest installing the dependencies manually using anaconda followed by pulling hdbscan from pip:

conda install cython
conda install numpy scipy
conda install scikit-learn
pip install hdbscan

For a manual install get this package:

wget https://github.com/scikit-learn-contrib/hdbscan/archive/master.zip
unzip master.zip
rm master.zip
cd hdbscan-master

Install the requirements

sudo pip install -r requirements.txt

or

conda install scikit-learn cython

Install the package

python setup.py install

Python Version

The hdbscan library supports both Python 2 and Python 3. However we recommend Python 3 as the better option if it is available to you.

Help and Support

For simple issues you can consult the FAQ in the documentation. If your issue is not suitably resolved there, please check the issues on github. Finally, if no solution is available there feel free to open an issue ; the authors will attempt to respond in a reasonably timely fashion.

Contributing

We welcome contributions in any form! Assistance with documentation, particularly expanding tutorials, is always welcome. To contribute please fork the project make your changes and submit a pull request. We will do our best to work through any issues with you and get your code merged into the main branch.

Citing

If you have used this codebase in a scientific publication and wish to cite it, please use the Journal of Open Source Software article.

L. McInnes, J. Healy, S. Astels, hdbscan: Hierarchical density based clustering In: Journal of Open Source Software, The Open Journal, volume 2, number 11. 2017

Licensing

The hdbscan package is 3-clause BSD licensed. Enjoy.

Owner
Leland McInnes
Leland McInnes
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 111 Jan 03, 2023
Shaded 😎 quantile plots

shadyquant 😎 This python package allows you to quantile and plot lines where you have multiple samples, typically for visualizing uncertainty. Your d

Mehrad Ansari 13 Sep 29, 2022
Create matplotlib visualizations from the command-line

MatplotCLI Create matplotlib visualizations from the command-line MatplotCLI is a simple utility to quickly create plots from the command-line, levera

Daniel Moura 46 Dec 16, 2022
Easily configurable, chart dashboards from any arbitrary API endpoint. JSON config only

Flask JSONDash Easily configurable, chart dashboards from any arbitrary API endpoint. JSON config only. Ready to go. This project is a flask blueprint

Chris Tabor 3.3k Dec 31, 2022
script to generate HeN ipfs app exports of GLSL shaders

HeNerator A simple script to generate HeN ipfs app exports from any frag shader created with: GlslViewer GlslEditor The Book of Shaders glslCanvas VS

Patricio Gonzalez Vivo 22 Dec 21, 2022
Keir&'s Visualizing Data on Life Expectancy

Keir's Visualizing Data on Life Expectancy Below is information on life expectancy in the United States from 1900-2017. You will also find information

9 Jun 06, 2022
Simple spectra visualization tool for astronomers

SpecViewer A simple visualization tool for astronomers. Dependencies Python = 3.7.4 PyQt5 = 5.15.4 pyqtgraph == 0.10.0 numpy = 1.19.4 How to use py

5 Oct 07, 2021
Data visualization using matplotlib

Data visualization using matplotlib project instructions Top 5 Most Common Coffee Origins In this visualization I used data from Ankur Chavda on Kaggl

13 Oct 27, 2021
This is Pygrr PolyArt, a program used for drawing custom Polygon models for your Pygrr project!

This is Pygrr PolyArt, a program used for drawing custom Polygon models for your Pygrr project!

Isaac 4 Dec 14, 2021
Create artistic visualisations with your exercise data (Python version)

strava_py Create artistic visualisations with your exercise data (Python version). This is a port of the R strava package to Python. Examples Facets A

Marcus Volz 53 Dec 28, 2022
Data science project for exploratory analysis on the kcse grades dataset (Kamilimu Data Science Track)

Kcse-Data-Analysis Data science project for exploratory analysis on the kcse grades dataset (Kamilimu Data Science Track) Findings The performance of

MUGO BRIAN 1 Feb 23, 2022
A script written in Python that generate output custom color (HEX or RGB input to x1b hexadecimal)

ColorShell ─ 1.5 Planned for v2: setup.sh for setup alias This script converts HEX and RGB code to x1b x1b is code for colorize outputs, works on ou

Riley 4 Oct 31, 2021
Pyan3 - Offline call graph generator for Python 3

Pyan takes one or more Python source files, performs a (rather superficial) static analysis, and constructs a directed graph of the objects in the combined source, and how they define or use each oth

Juha Jeronen 235 Jan 02, 2023
Interactive Dashboard for Visualizing OSM Data Change

Dashboard and intuitive data downloader for more interactive experience with interpreting osm change data.

1 Feb 20, 2022
An intuitive library to add plotting functionality to scikit-learn objects.

Welcome to Scikit-plot Single line functions for detailed visualizations The quickest and easiest way to go from analysis... ...to this. Scikit-plot i

Reiichiro Nakano 2.3k Dec 31, 2022
An(other) implementation of JSON Schema for Python

jsonschema jsonschema is an implementation of JSON Schema for Python. from jsonschema import validate # A sample schema, like what we'd get f

Julian Berman 4k Jan 04, 2023
This is a learning tool and exploration app made using the Dash interactive Python framework developed by Plotly

Support Vector Machine (SVM) Explorer This app has been moved here. This repo is likely outdated and will not be updated. This is a learning tool and

Plotly 150 Nov 03, 2022
100 data puzzles for pandas, ranging from short and simple to super tricky (60% complete)

100 pandas puzzles Puzzles notebook Solutions notebook Inspired by 100 Numpy exerises, here are 100* short puzzles for testing your knowledge of panda

Alex Riley 1.9k Jan 08, 2023
A set of three functions, useful in geographical calculations of different sorts

GreatCircle A set of three functions, useful in geographical calculations of different sorts. Available for PHP, Python, Javascript and Ruby. Live dem

72 Sep 30, 2022
Tools for exploratory data analysis in Python

Dora Exploratory data analysis toolkit for Python. Contents Summary Setup Usage Reading Data & Configuration Cleaning Feature Selection & Extraction V

Nathan Epstein 599 Dec 25, 2022