Movie recommendation using RASA, TigerGraph

Overview

Demo run:

The below video will highlight the runtime of this setup and some sample real-time conversations using the power of RASA + TigerGraph,

IMAGE ALT TEXT HERE

Steps to run this solution:

Step-0:

Step-1: (Scroll down for detailed setup instructions)

  • cd Movie_Chatbot

Terminal-1:

  • $ rasa train
  • $ rasa run -m models --enable-api --cors "*" --debug

Terminal-2:

  • $ rasa run actions

Step-2: (Scroll down for detailed setup instructions)

  • Run tgcloud solution

Project Overview: Movie recommendations using RASA + TigerGraph

Conversational recommendation systems (CRS) using knowledge graphs is a hot topic as they intend to return the best real-time recommendations to users through a multi-turn interactive conversation. CRS allows users to provide their feedback during the conversation, unlike the traditional recommendation systems. CRS can combine the knowledge of the predefined user profile with the current user requirements to output custom yet most relevant recommendations or suggestions. This work will implement a chatbot using the open-source chatbot development framework - RASA and the most powerful, super-fast, and leading cloud graph database - TigerGraph.

NOTE: This help page will not go into the depth of RASA, TigerGraph functionalities. This help page will touch base and demo how TigerGraph can be integrated with RASA.

Technological Stack

Here is the high-level outline of the technological stack used in this demo project,

Putting things to work

Step-1: (RASA) Implement language models, user intents and backend actions

Beginner tutorial: This is a very good spot to learn about setting up a basic chatbot using RASA and understanding the core framework constructs.

Step-1a: Install RASA

Open a new terminal and setup RASA using the below commands:

  • $ python3 -m virtualenv -p python3 .
  • $ source bin/activate
  • $ pip install rasa

Step-1b: Create new RASA project

  • $ rasa init

After the execution of the above command, a new RASA 'Movie_Chatbot' project will be created in the current directory as shown below,

Below is a kick-off conversation with the newly created chatbot,

Ya, that's quite simple to create a chatbot now with RASA!

Step-1c: Define intents, stories, action triggers

Now, navigate to the project folder Movie_Chatbot/data and modify the default nlu.yml and rules.yml files by adding intents, rules for our movie recommendation business usecase as show below,

Step-1d: Install the TigerGraph python library using pip with the below command,

  • pip install pyTigerGraph

Step-1e: Define action endpoints

Now, navigate to the project folder Movie_Chatbot/actions and modify the actions.py file to include TigerGraph connection parameters and action definitions with the respective movie recommendation CSQL query as show below,

Add the defined action method to the domain.yml as shown below,

Here, 'RecommendMovies' is the name of the CSQL query in the tgcloud database which will discuss in detail in the next section.

With this step, we are done with the installation and configuration of the RASA chatbot.

Step-2: (TigerGraph) Setup TigerGraph database and querying APIs

Beginner tutorial: This is a very good spot to learn about setting up a tigergraph database on the cloud and implementing CSQL queries,

Step-2a: Setup tgcloud database

  • Go to, http://tgcloud.io/ and create a new account.

  • Activate the account.

  • Go to, "My Solutions" and click "Create Solution"

  • Select the starter kit as shown below then click Next twice.

  • Provide a solution name, password tags, and subdomain as needed, and then click 'Next'

  • Enter Submit and close your eyes for the magic!

And Yes!, the TigerGraph Movie recommendation Graph database is created. Buckle up a few more things to do!

  • Go to, GraphStudio and 'Load Data' by selecting the *.csv files and hit the 'play' button as shown below.

  • Once the data is loaded, data statistics should display a green 'FINISHED' message as shown below.

  • Go to, 'Write Queries' and implement the CSQL queries here as shown below,

  • Save the CSQL query and publish it using the 'up arrow' button.

  • Lets, test the query by running with a sample input as shown below,

All Set! The TigerGraph Database is up and running. Are we done? Almost! There is one more thing to do!

Step-2b: Configure secret token

  • Let's set up the secret key access to the cloud TigerGraph API as it is very crucial to ensure a secure way of providing access to the data.

  • Go to, Admin Dashboard->Users->Management and define a secret key as shown below,

  • NOTE: Please remember to copy the key to be used in the RASA connection configuration (Movie_ChatBot/actions/actions.py)

Step-3: (Web UI) Setting up a web ui for the RASA chatbot

  • In this work, we are using an open-source javascript-based chatbot UI to interact with the RASA solution we implemented in Step-1.

  • The RASA server endpoint is configured in the widget/static/Chat.js as shown below,

All right, we are one step close to seeing the working of the TigerGraph and RASA integration.

Step-4: (RASA+TigerGraph) Start RASA and run Actions

Run the below commands in separate terminals,

Terminal-1:

  • $ rasa train
  • $ rasa run -m models --enable-api --cors "*" --debug

Terminal-2:

  • $ rasa run actions

Step-5: (ChatBot UI) Open Chatbot User interface

Hit open widget/index.html to start interacting with the TigerBot movie recommendation engine!

Yes, we are DONE!

I hope this source is informative and helpful.

References:

Owner
Sudha Vijayakumar
Graduate student | Aspiring Software Engineer - Applied Data Science AI/ML/DL
Sudha Vijayakumar
simple tool to paint axis x and y

simple tool to paint axis x and y

G705 1 Oct 21, 2021
A set of three functions, useful in geographical calculations of different sorts

GreatCircle A set of three functions, useful in geographical calculations of different sorts. Available for PHP, Python, Javascript and Ruby. Live dem

72 Sep 30, 2022
YOPO is an interactive dashboard which generates various standard plots.

YOPO is an interactive dashboard which generates various standard plots.you can create various graphs and charts with a click of a button. This tool uses Dash and Flask in backend.

ADARSH C 38 Dec 20, 2022
Some problems of SSLC ( High School ) before outputs and after outputs

Some problems of SSLC ( High School ) before outputs and after outputs 1] A Python program and its output (output1) while running the program is given

Fayas Noushad 3 Dec 01, 2021
Simple python implementation with matplotlib to manually fit MIST isochrones to Gaia DR2 color-magnitude diagrams

Simple python implementation with matplotlib to manually fit MIST isochrones to Gaia DR2 color-magnitude diagrams

Karl Jaehnig 7 Oct 22, 2022
Fast data visualization and GUI tools for scientific / engineering applications

PyQtGraph A pure-Python graphics library for PyQt5/PyQt6/PySide2/PySide6 Copyright 2020 Luke Campagnola, University of North Carolina at Chapel Hill h

pyqtgraph 3.1k Jan 08, 2023
Quickly and accurately render even the largest data.

Turn even the largest data into images, accurately Build Status Coverage Latest dev release Latest release Docs Support What is it? Datashader is a da

HoloViz 2.9k Dec 28, 2022
Pydrawer: The Python package for visualizing curves and linear transformations in a super simple way

pydrawer 📐 The Python package for visualizing curves and linear transformations in a super simple way. ✏️ Installation Install pydrawer package with

Dylan Tintenfich 56 Dec 30, 2022
Simple implementation of Self Organizing Maps (SOMs) with rectangular and hexagonal grid topologies

py-self-organizing-map Simple implementation of Self Organizing Maps (SOMs) with rectangular and hexagonal grid topologies. A SOM is a simple unsuperv

Jonas Grebe 1 Feb 10, 2022
nptsne is a numpy compatible python binary package that offers a number of APIs for fast tSNE calculation.

nptsne nptsne is a numpy compatible python binary package that offers a number of APIs for fast tSNE calculation and HSNE modelling. For more detail s

Biomedical Visual Analytics Unit LUMC - TU Delft 29 Jul 05, 2022
Insert SVGs into matplotlib

Insert SVGs into matplotlib

Andrew White 35 Dec 29, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Jan 04, 2023
ICS-Visualizer is an interactive Industrial Control Systems (ICS) network graph that contains up-to-date ICS metadata

ICS-Visualizer is an interactive Industrial Control Systems (ICS) network graph that contains up-to-date ICS metadata (Name, company, port, user manua

QeeqBox 2 Dec 13, 2021
web application for flight log analysis & review

Flight Review This is a web application for flight log analysis. It allows users to upload ULog flight logs, and analyze them through the browser. It

PX4 Drone Autopilot 145 Dec 20, 2022
Create Badges with stats of Scratch User, Project and Studio. Use those badges in Github readmes, etc.

Scratch-Stats-Badge Create customized Badges with stats of Scratch User, Studio or Project. Use those badges in Github readmes, etc. Examples Document

Siddhesh Chavan 5 Aug 28, 2022
Make scripted visualizations in blender

Scripted visualizations in blender The goal of this project is to script 3D scientific visualizations using blender. To achieve this, we aim to bring

Praneeth Namburi 10 Jun 01, 2022
Collection of scripts for making high quality beautiful math-related posters.

Poster Collection of scripts for making high quality beautiful math-related posters. The poster can have as large printing size as 3x2 square feet wit

Nattawut Phetmak 3 Jun 09, 2022
Color scales in Python for humans

colorlover Color scales for humans IPython notebook: https://plot.ly/ipython-notebooks/color-scales/ import colorlover as cl from IPython.display impo

Plotly 146 Sep 25, 2022
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters

Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing

Peter Wittek 239 Nov 10, 2022
Frbmclust - Clusterize FRB profiles using hierarchical clustering, plot corresponding parameters distributions

frbmclust Getting Started Clusterize FRB profiles using hierarchical clustering,

3 May 06, 2022