Improving Object Detection by Label Assignment Distillation

Related tags

Deep LearningCoLAD
Overview

Improving Object Detection by Label Assignment Distillation

This is the official implementation of the WACV 2022 paper Improving Object Detection by Label Assignment Distillation. We provide the code for Label Assignement Distillation (LAD), training logs and several model checkpoints.

Table of Contents

  1. Introduction
  2. Installation
  3. Usage
  4. Experiments
  5. Citation

Introduction

This is the official repository for the paper Improving Object Detection by Label Assignment Distillation.

Soft Label Distillation concept (a) Label Assignment Distillation concept (b)
  • Distillation in Object Detection is typically achived by mimicking the teacher's output directly, such soft-label distillation or feature mimicking (Fig 1.a).
  • We propose the concept of Label Assignment Distillation (LAD), which solves the label assignment problems from distillation perspective, thus allowing the student learns from the teacher's knowledge without direct mimicking (Fig 1.b). LAD is very general, and applied to many dynamic label assignment methods. Following figure shows a concrete example of how to adopt Probabilistic Anchor Assignment (PAA) to LAD.
Probabilistic Anchor Assignment (PAA) Label Assignment Distillation (LAD) based on PAA
  • We demonstrate a number of advantages of LAD, notably that it is very simple and effective, flexible to use with most of detectors, and complementary to other distillation techniques.
  • Later, we introduced the Co-learning dynamic Label Assignment Distillation (CoLAD) to allow two networks to be trained mutually based on a dynamic switching criterion. We show that two networks trained with CoLAD are significantly better than if each was trained individually, given the same initialization.


Installation

  • Create environment:
conda create -n lad python=3.7 -y
conda activate lad
  • Install dependencies:
conda install pytorch=1.7.0 torchvision cudatoolkit=10.2 -c pytorch -y
pip install openmim future tensorboard sklearn timm==0.3.4
mim install mmcv-full==1.2.5
mim install mmdet==2.10.0
pip install -e ./

Usage

Train the model

#!/usr/bin/env bash
set -e
export GPUS=2
export CUDA_VISIBLE_DEVICES=0,2

CFG="configs/lad/paa_lad_r50_r101p1x_1x_coco.py"
WORKDIR="/checkpoints/lad/paa_lad_r50_r101p1x_1x_coco"

mim train mmdet $CFG --work-dir $WORKDIR \
    --gpus=$GPUS --launcher pytorch --seed 0 --deterministic

Test the model

#!/usr/bin/env bash
set -e
export GPUS=2
export CUDA_VISIBLE_DEVICES=0,2

CFG="configs/paa/paa_lad_r50_r101p1x_1x_coco.py"
CKPT="/checkpoints/lad/paa_lad_r50_r101p1x_1x_coco/epoch_12.pth"

mim test mmdet $CFG --checkpoint $CKPT --gpus $GPUS --launcher pytorch --eval bbox

Experiments

1. A Pilot Study - Preliminary Comparison.

Table 2: Compare the performance of the student PAA-R50 using Soft-Label, Label Assignment Distillation (LAD) and their combination (SoLAD) on COCO validation set.

Method Teacher Student gamma mAP Improve Config Download
Baseline None PAA-R50 (baseline) 2 40.4 - config model | log
Soft-Label-KL loss PAA-R101 PAA-R50 0.5 41.3 +0.9 config model | log
LAD (ours) PAA-R101 PAA-R50 2 41.6 +1.2 config model | log
SoLAD(ours) PAA-R101 PAA-R50 0.5 42.4 +2.0 config model | log

2. A Pilot Study - Does LAD need a bigger teacher network?

Table 3: Compare Soft-Label and Label Assignment Distillation (LAD) on COCO validation set. Teacher and student use ResNet50 and ResNet101 backbone, respectively. 2× denotes the 2× training schedule.

Method Teacher Student mAP Improve Config Download
Baseline None PAA-R50 40.4 - config model | log
Baseline (1x) None PAA-R101 42.6 - config model | log
Baseline (2x) None PAA-R101 43.5 +0.9 config model | log
Soft-Label PAA-R50 PAA-R101 40.4 -2.2 config model | log
LAD (our) PAA-R50 PAA-R101 43.3 +0.7 config model | log

3. Compare with State-ot-the-art Label Assignment methods

We use the PAA-R50 3x pretrained with multi-scale on COCO as the initial teacher. The teacher was evaluated with 43:3AP on the minval set. We train our network with the COP branch, and the post-processing steps are similar to PAA.

  • Table 7.1 Backbone ResNet-101, train 2x schedule, Multi-scale training. Results are evaluated on the COCO testset.
Method AP AP50 AP75 APs APm APl Download
FCOS 41.5 60.7 45.0 24.4 44.8 51.6
NoisyAnchor 41.8 61.1 44.9 23.4 44.9 52.9
FreeAnchor 43.1 62.2 46.4 24.5 46.1 54.8
SAPD 43.5 63.6 46.5 24.9 46.8 54.6
MAL 43.6 61.8 47.1 25.0 46.9 55.8
ATSS 43.6 62.1 47.4 26.1 47.0 53.6
AutoAssign 44.5 64.3 48.4 25.9 47.4 55.0
PAA 44.8 63.3 48.7 26.5 48.8 56.3
OTA 45.3 63.5 49.3 26.9 48.8 56.1
IQDet 45.1 63.4 49.3 26.7 48.5 56.6
CoLAD (ours) 46.0 64.4 50.6 27.9 49.9 57.3 config | model | log

4. Appendix - Ablation Study of Conditional Objectness Prediction (COP)

Table 1 - Appendix: Compare different auxiliary predictions: IoU, Implicit Object prediction (IOP), and Conditional Objectness prediction (COP), with ResNet-18 and ResNet-50 backbones. Experiments on COCO validate set.

IoU IOP COP ResNet-18 ResNet-50
✔️ 35.8 (config | model | log) 40.4 (config | model | log)
✔️ ✔️ 36.7 (config | model | log) 41.6 (config | model | log)
✔️ ✔️ 36.9 (config | model | log) 41.6 (config | model | log)
✔️ 36.6 (config | model | log) 41.1 (config | model | log)
✔️ 36.9 (config | model | log) 41.2 (config | model | log)

Citation

Please cite the paper in your publications if it helps your research:

@misc{nguyen2021improving,
      title={Improving Object Detection by Label Assignment Distillation}, 
      author={Chuong H. Nguyen and Thuy C. Nguyen and Tuan N. Tang and Nam L. H. Phan},
      year={2021},
      eprint={2108.10520},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
  • On Sep 25 2021, we found that there is a concurrent (unpublished) work from Jianfend Wang, that shares the key idea about Label Assignment Distillation. However, both of our works are independent and original. We would like to acknowledge his work and thank for his help to clarify the issue.
Owner
Cybercore Co. Ltd
Cybercore Co. Ltd
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that gene

Guan-Horng Liu 43 Jan 03, 2023
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022
Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection".

A2S-USOD Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection". Code will be released upon

15 Dec 16, 2022
Network Enhancement implementation in pytorch

network_enahncement_pytorch Network Enhancement implementation in pytorch Research paper Network Enhancement: a general method to denoise weighted bio

Yen 1 Nov 12, 2021
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving.

MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving. It is a comprehensive framework for research purpose that integrates popular MWP benchmark datasets and typical deep learnin

119 Jan 04, 2023
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023
Bolt Online Learning Toolbox

Bolt Online Learning Toolbox Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning a

Peter Prettenhofer 87 Dec 12, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
Implementation of the "Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos" paper.

Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos Introduction Point cloud videos exhibit irregularities and lack of or

Hehe Fan 101 Dec 29, 2022