Improving Object Detection by Label Assignment Distillation

Related tags

Deep LearningCoLAD
Overview

Improving Object Detection by Label Assignment Distillation

This is the official implementation of the WACV 2022 paper Improving Object Detection by Label Assignment Distillation. We provide the code for Label Assignement Distillation (LAD), training logs and several model checkpoints.

Table of Contents

  1. Introduction
  2. Installation
  3. Usage
  4. Experiments
  5. Citation

Introduction

This is the official repository for the paper Improving Object Detection by Label Assignment Distillation.

Soft Label Distillation concept (a) Label Assignment Distillation concept (b)
  • Distillation in Object Detection is typically achived by mimicking the teacher's output directly, such soft-label distillation or feature mimicking (Fig 1.a).
  • We propose the concept of Label Assignment Distillation (LAD), which solves the label assignment problems from distillation perspective, thus allowing the student learns from the teacher's knowledge without direct mimicking (Fig 1.b). LAD is very general, and applied to many dynamic label assignment methods. Following figure shows a concrete example of how to adopt Probabilistic Anchor Assignment (PAA) to LAD.
Probabilistic Anchor Assignment (PAA) Label Assignment Distillation (LAD) based on PAA
  • We demonstrate a number of advantages of LAD, notably that it is very simple and effective, flexible to use with most of detectors, and complementary to other distillation techniques.
  • Later, we introduced the Co-learning dynamic Label Assignment Distillation (CoLAD) to allow two networks to be trained mutually based on a dynamic switching criterion. We show that two networks trained with CoLAD are significantly better than if each was trained individually, given the same initialization.


Installation

  • Create environment:
conda create -n lad python=3.7 -y
conda activate lad
  • Install dependencies:
conda install pytorch=1.7.0 torchvision cudatoolkit=10.2 -c pytorch -y
pip install openmim future tensorboard sklearn timm==0.3.4
mim install mmcv-full==1.2.5
mim install mmdet==2.10.0
pip install -e ./

Usage

Train the model

#!/usr/bin/env bash
set -e
export GPUS=2
export CUDA_VISIBLE_DEVICES=0,2

CFG="configs/lad/paa_lad_r50_r101p1x_1x_coco.py"
WORKDIR="/checkpoints/lad/paa_lad_r50_r101p1x_1x_coco"

mim train mmdet $CFG --work-dir $WORKDIR \
    --gpus=$GPUS --launcher pytorch --seed 0 --deterministic

Test the model

#!/usr/bin/env bash
set -e
export GPUS=2
export CUDA_VISIBLE_DEVICES=0,2

CFG="configs/paa/paa_lad_r50_r101p1x_1x_coco.py"
CKPT="/checkpoints/lad/paa_lad_r50_r101p1x_1x_coco/epoch_12.pth"

mim test mmdet $CFG --checkpoint $CKPT --gpus $GPUS --launcher pytorch --eval bbox

Experiments

1. A Pilot Study - Preliminary Comparison.

Table 2: Compare the performance of the student PAA-R50 using Soft-Label, Label Assignment Distillation (LAD) and their combination (SoLAD) on COCO validation set.

Method Teacher Student gamma mAP Improve Config Download
Baseline None PAA-R50 (baseline) 2 40.4 - config model | log
Soft-Label-KL loss PAA-R101 PAA-R50 0.5 41.3 +0.9 config model | log
LAD (ours) PAA-R101 PAA-R50 2 41.6 +1.2 config model | log
SoLAD(ours) PAA-R101 PAA-R50 0.5 42.4 +2.0 config model | log

2. A Pilot Study - Does LAD need a bigger teacher network?

Table 3: Compare Soft-Label and Label Assignment Distillation (LAD) on COCO validation set. Teacher and student use ResNet50 and ResNet101 backbone, respectively. 2× denotes the 2× training schedule.

Method Teacher Student mAP Improve Config Download
Baseline None PAA-R50 40.4 - config model | log
Baseline (1x) None PAA-R101 42.6 - config model | log
Baseline (2x) None PAA-R101 43.5 +0.9 config model | log
Soft-Label PAA-R50 PAA-R101 40.4 -2.2 config model | log
LAD (our) PAA-R50 PAA-R101 43.3 +0.7 config model | log

3. Compare with State-ot-the-art Label Assignment methods

We use the PAA-R50 3x pretrained with multi-scale on COCO as the initial teacher. The teacher was evaluated with 43:3AP on the minval set. We train our network with the COP branch, and the post-processing steps are similar to PAA.

  • Table 7.1 Backbone ResNet-101, train 2x schedule, Multi-scale training. Results are evaluated on the COCO testset.
Method AP AP50 AP75 APs APm APl Download
FCOS 41.5 60.7 45.0 24.4 44.8 51.6
NoisyAnchor 41.8 61.1 44.9 23.4 44.9 52.9
FreeAnchor 43.1 62.2 46.4 24.5 46.1 54.8
SAPD 43.5 63.6 46.5 24.9 46.8 54.6
MAL 43.6 61.8 47.1 25.0 46.9 55.8
ATSS 43.6 62.1 47.4 26.1 47.0 53.6
AutoAssign 44.5 64.3 48.4 25.9 47.4 55.0
PAA 44.8 63.3 48.7 26.5 48.8 56.3
OTA 45.3 63.5 49.3 26.9 48.8 56.1
IQDet 45.1 63.4 49.3 26.7 48.5 56.6
CoLAD (ours) 46.0 64.4 50.6 27.9 49.9 57.3 config | model | log

4. Appendix - Ablation Study of Conditional Objectness Prediction (COP)

Table 1 - Appendix: Compare different auxiliary predictions: IoU, Implicit Object prediction (IOP), and Conditional Objectness prediction (COP), with ResNet-18 and ResNet-50 backbones. Experiments on COCO validate set.

IoU IOP COP ResNet-18 ResNet-50
✔️ 35.8 (config | model | log) 40.4 (config | model | log)
✔️ ✔️ 36.7 (config | model | log) 41.6 (config | model | log)
✔️ ✔️ 36.9 (config | model | log) 41.6 (config | model | log)
✔️ 36.6 (config | model | log) 41.1 (config | model | log)
✔️ 36.9 (config | model | log) 41.2 (config | model | log)

Citation

Please cite the paper in your publications if it helps your research:

@misc{nguyen2021improving,
      title={Improving Object Detection by Label Assignment Distillation}, 
      author={Chuong H. Nguyen and Thuy C. Nguyen and Tuan N. Tang and Nam L. H. Phan},
      year={2021},
      eprint={2108.10520},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
  • On Sep 25 2021, we found that there is a concurrent (unpublished) work from Jianfend Wang, that shares the key idea about Label Assignment Distillation. However, both of our works are independent and original. We would like to acknowledge his work and thank for his help to clarify the issue.
Owner
Cybercore Co. Ltd
Cybercore Co. Ltd
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023
Job Assignment System by Real-time Emotion Detection

Emotion-Detection Job Assignment System by Real-time Emotion Detection Emotion is the essential role of facial expression and it could provide a lot o

1 Feb 08, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality".

personalized-breath Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality". Guideline To ex

Manh-Ha Bui 2 Nov 15, 2021
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.

Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face

BAPPY AHMED 20 Dec 28, 2021