Create and implement a deep learning library from scratch.

Related tags

Deep LearningARA
Overview

ARA1

In this project, we create and implement a deep learning library from scratch.

Table of Contents

About The Project

Deep learning can be considered as a subset of machine learning. It is a field that is based on learning and improving on its own by examining computer algorithms. Deep learning works with artificial neural networks consisting of many layers. This project, which is creating a Deep Learning Library from scratch, can be further implemented in various kinds of projects that involve Deep Learning. Which include, but are not limited to applications in Image, Natural Language and Speech processing, among others.

Aim

To implement a deep learning library from scratch.

Tech Stack

Technologies used in the project:

  • Python and numpy, pandas, matplotlib
  • Google Colab

File Structure

.
├── code
|   └── main.py                                   #contains the main code for the library
├── resources                                     #Notes 
|   ├── ImprovingDeepNeuralNetworks
|   |   ├── images
|   |   |   ├── BatchvsMiniBatch.png
|   |   |   ├── Bias.png
|   |   |   └── EWG.png
|   |   └── notes.md
|   ├── Course1.md                               
|   ├── accuracy.jpg
|   ├── error.jpg
|   └── grad_des_graph.jpg
├── LICENSE.txt
├── ProjectReport.pdf                            #Project Report
└── README.md                                    #Readme

Approach

The approach of the project is to basically create a deep learning library, as stated before. The aim of the project was to implement various deep learning algorithms, in order to drive a deep neural network and hence,create a deep learning library, which is modular,and driven on user input so that it can be applied for various deep learning processes, and to train and test it against a model.

Theory

A neural network is a network or circuit of neurons, or in a modern sense, an artificial neural network, composed of artificial neurons or nodes.

There are different types of Neural Networks

  • Standard Neural Networks
  • Convolutional Neural Networks
  • Recurring Neural Networks

Loss Function:

Loss function is defined so as to see how good the output ŷ is compared to output label y.

Cost Function :

Cost Function quantifies the error between predicted values and expected values.

Gradient Descent : -

Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function.

Descent

Getting Started

Prerequisites

  • Object oriented programming in Python

  • Linear Algebra

  • Basic knowledge of Neural Networks

  • Python 3.6 and above

    You can visit the Python Download Guide for the installation steps.

  • Install numpy next

pip install numpy

Installation

  1. Clone the repo
git clone [email protected]:https://github.com/Ris-Bali/ARA.git

Results

Training

We trained a model on the iris dataset using ARA here's the video for the same -

ARA.mp4

As you may have observed we achieved an accuracy of nearly 100% while training the model.

Result

Results obtained during training: error (where Y-axis represents the value of the cost function and X axis represents the number of iterations) accuracy (where Y-axis represents the accuracy of the prediction wrt the labels and X-axis represents the number of iterations)

Future Work

  • Short term
    • Adding class for normalization and regularization
  • Near Future
    • Addition of support for linear regression
    • Addition of classes for LSTM and GRU blocks
  • Future goal
    • Addition of algorithms to support CNN models.
    • Addition of more Machine Learning algorithms
    • Include algorithms to facilitate Image Recognition, Machine Translation and Natural Language Processing

Troubleshooting

  • Numpy library not working so we shifted workspace to colab

Contributors

Acknowledgements

Resources

License

Describe your License for your project.

Owner
Rishabh Bali
Love to learn new stuff
Rishabh Bali
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection Pytorch implemetation of paper 'Learning to Aggregate and Personalize

Tencent YouTu Research 136 Dec 29, 2022
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 31, 2022
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory b

Neural Magic 1.2k Jan 09, 2023
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Bin Xiao 175 Jan 08, 2023
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022
Deep Residual Learning for Image Recognition

Deep Residual Learning for Image Recognition This is a Torch implementation of "Deep Residual Learning for Image Recognition",Kaiming He, Xiangyu Zhan

Kimmy 561 Dec 01, 2022
Code for ICDM2020 full paper: "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"

Subg-Con Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning (Jiao et al., ICDM 2020): https://arxiv.org/abs/2009.10273 Over

34 Jul 06, 2022
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
Streamlit component for TensorBoard, TensorFlow's visualization toolkit

streamlit-tensorboard This is a work-in-progress, providing a function to embed TensorBoard, TensorFlow's visualization toolkit, in Streamlit apps. In

Snehan Kekre 27 Nov 13, 2022