An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

Overview

简介

通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNNMiniXception。利用 imdb_crop数据集训练模型,进行人脸性别分类,准确率均达到96%。

模型 准确率 输入尺寸
SimpleCNN 96.00% (48, 48, 3)
MiniXception 96.01% (64, 64, 1)

Requirements

scipy==1.2.1
paddlepaddle==2.1.2
numpy==1.20.1
opencv-python==3.4.10.37
pyyaml~=5.4.1
visualdl~=2.2.0
tqdm~=4.62.0

数据准备

我们在数据集imdb_crop (密码 mu2h)上训练模型,数据集也可以在这里下载。下载和解压数据后,不用对数据再做别的处理了,编辑配置文件conf.yamlconf2.yaml,两者分别是SimpleCNNMiniXception的配置文件,把 imdb_dir设置成数据集所在的目录。不用划分训练集和测试集,程序会自动划分,即使你不训练只测试。我们采取的数据集划分方式和论文作者的一样,先根据文件名对图片进行排序,前80%为训练集,后20%为测试集。

训练

在配置文件conf.yamlconf2.yaml里进行相关配置,mode设置成train,其它选项根据个人情况配置。

执行脚本

python train_gender_classfifier.py path_to_conf

比如

python train_gender_classfifier.py ./conf.yaml

path_to_conf 是可选的,默认是 ./conf.yaml,即训练SimpleCNN

测试

在配置文件conf.yamlconf2.yaml里进行相关配置,mode设置成val,另外要配置model_state_dictimdb_dir。训练和测试的imdb_dir是一样的,都是数据集解压后所在的目录,不用对数据进行任何修改。训练和测试的imdb_dir虽然一样,但是训练和测试取的是数据集的不同部分,在上文的数据准备中有提到数据集划分的方式。

执行脚本

python train_gender_classfifier.py path_to_conf

等结果就行了。

指标可视化

你可以通过 visuadl 可视化训练过程中指标(比如损失、准确率等)的变化。可以在配置文件里设置日志的输出目录log_dir,在训练的过程中,每个epoch的准确率、损失、学习率的信息会写到日志中,分trainval两个文件夹。

当要查看指标时,执行以下命令

visualdl --logdir your_logdir --host 127.0.0.1

your_logdir是你设置的日志目录。

然后在浏览器中访问

http://127.0.0.1:8040/

下面展示我们的模型的指标曲线图。

SimpleCNN

avatar

avatar

MiniXception

avatar

avatar

Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
Genpass - A Passwors Generator App With Python3

Genpass Welcom again into another python3 App this is simply an Passwors Generat

Mal4D 1 Jan 09, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
deep_image_prior_extension

Code for "Is Deep Image Prior in Need of a Good Education?" Project page: https://jleuschn.github.io/docs.educated_deep_image_prior/. Supplementary Ma

riccardo barbano 7 Jan 09, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
A machine learning package for streaming data in Python. The other ancestor of River.

scikit-multiflow is a machine learning package for streaming data in Python. creme and scikit-multiflow are merging into a new project called River. W

670 Dec 30, 2022
Answering Open-Domain Questions of Varying Reasoning Steps from Text

This repository contains the authors' implementation of the Iterative Retriever, Reader, and Reranker (IRRR) model in the EMNLP 2021 paper "Answering Open-Domain Questions of Varying Reasoning Steps

26 Dec 22, 2022
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
통일된 DataScience 폴더 구조 제공 및 가상환경 작업의 부담감 해소

Lucas coded by linux shell 목차 Mac버전 CookieCutter (autoenv) 1.How to Install autoenv 2.폴더 진입 시, activate 구현하기 3.폴더 탈출 시, deactivate 구현하기 4.Alias 설정하기 5

ello 3 Feb 21, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022