Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Overview

Training Reproduce of PSPNet.

(Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with supporting Sync Batch Norm, see https://github.com/hszhao/semseg.)

(Updated 2019/02/26. A major change of code structure. For the version before, checkout v0.9 https://github.com/holyseven/PSPNet-TF-Reproduce/tree/v0.9.)

This is an implementation of PSPNet (from training to test) in pure Tensorflow library (tested on TF1.12, Python 3).

  • Supported Backbones: ResNet-V1-50, ResNet-V1-101 and other ResNet-V1s can be easily added.
  • Supported Databases: ADE20K, SBD (Augmented Pascal VOC) and Cityscapes.
  • Supported Modes: training, validation and inference with multi-scale inputs.
  • More things: L2-SP regularization and sync batch normalization implementation.

L2-SP Regularization

L2-SP regularization is a variant of L2 regularization. Instead of the origin like L2 does, L2-SP sets the pre-trained model as reference, just like (w - w0)^2, where w0 is the pre-trained model. Simple but effective. More details about L2-SP can be found in the paper and the code.

If you find the L2-SP useful for your research (not limited in image segmentation), please consider citing our work:

@inproceedings{li2018explicit,
  author    = {Li, Xuhong and Grandvalet, Yves and Davoine, Franck},
  title     = {Explicit Inductive Bias for Transfer Learning with Convolutional Networks},
  booktitle={International Conference on Machine Learning (ICML)},
   pages     = {2830--2839},
  year      = {2018}
}

Sync Batch Norm

When concerning image segmentation, batch size is usually limited. Small batch size will make the gradients instable and harm the performance, especially for batch normalization layers. Multi-GPU settings by default does not help because the statistics in batch normalization layer are computed independently within each GPU. More discussion can be found here and here.

This repo resolves this problem in pure python and pure Tensorflow by simply using a list as input. The main idea is located in model/utils_mg.py

I do not know if this is the first implementation of sync batch norm in Tensorflow, but there is already an implementation in PyTorch and some applications.

Update: There is other implementation that uses NCCL to gather statistics across GPUs, see in tensorpack. However, TF1.1 does not support gradients passing by nccl_all_reduce. Plus, ppc64le with tf1.10, cuda9.0 and nccl1.3.5 was not able to run this code. No idea why, and do not want to spend a lot of time on this. Maybe nccl2 can solve this.

Results

Numerical Results

  • Random scaling for all
  • Random rotation for SBD
  • SS/MS on validation set
  • Welcome to correct and fill in the table
Backbones L2 L2-SP
Cityscapes (train set: 3K) ResNet-50 76.9/? 77.9/?
ResNet-101 77.9/? 78.6/?
Cityscapes (coarse + train set: 20K + 3K) ResNet-50
ResNet-101 80.0/80.9 80.1/81.2*
SBD ResNet-50 76.5/? 76.6/?
ResNet-101 77.5/79.2 78.5/79.9
ADE20K ResNet-50 41.92/43.09
ResNet-101 42.80/?

*This model gets 80.3 without post-processing methods on Cityscapes test set (1525).

Qualitative Results on Cityscapes

Devil Details

Training and Evaluation

Download the databases with the links: ADE20K, SBD (Augmented Pascal VOC) and Cityscapes.

Prepare the database for Cityscapes by generating *labelTrainIds.png images with createTrainIdLabelImgs, and then change the code in database/reader.py or move undersired images to other directory.

Download pretrained models.

cd z_pretrained_weights
sh download_resnet_v1_101.sh

A script of training resnet-50 on ADE20K, getting around 41.92 mIoU scores (with single-scale test):

python ./run.py --network 'resnet_v1_50' --visible_gpus '0,1' --reader_method 'queue' --lrn_rate 0.01 --weight_decay_mode 0 --weight_decay_rate 0.0001 --weight_decay_rate2 0.001 --database 'ADE' --subsets_for_training 'train' --batch_size 8 --train_image_size 480 --snapshot 30000 --train_max_iter 90000 --test_image_size 480 --random_rotate 0 --fine_tune_filename './z_pretrained_weights/resnet_v1_50.ckpt'

Test and Infer

Test with multi-scale (set batch_size as large as you can to speed up).

python predict.py --visible_gpus '0' --network 'resnet_v1_101' --database 'ADE' --weights_ckpt './log/ADE/PSP-resnet_v1_101-gpu_num2-batch_size8-lrn_rate0.01-random_scale1-random_rotate1-480-60000-train-1-0.0001-0.001-0-0-1-1/snapshot/model.ckpt-60000' --test_subset 'val' --test_image_size 480 --batch_size 8 --ms 1 --mirror 1

Infer one image (with multi-scale).

python demo_infer.py --database 'Cityscapes' --network 'resnet_v1_101' --weights_ckpt './log/Cityscapes/old/model.ckpt-50000' --test_image_size 864 --batch_size 4 --ms 1

Uncertainties for Training Details:

  1. (Cityscapes only) Whether finely labeled data in the first training stage should be involved?
  2. (Cityscapes only) Whether the (base) learning rate should be reduced in the second training stage?
  3. Whether logits should be resized to original size before computing the loss?
  4. Whether new layers should receive larger learning rate?
  5. About weired padding behavior of tf.image.resize_images(). Whether the align_corners=True should be set?
  6. What is optimal hyperparameter of decay for statistics of batch normalization layers? (0.9, 0.95, 0.9997)
  7. may be more but not sure how much these little changes can effect the results ...
  8. Welcome to discuss !

Change Log

26 Febuary, 2019

  • Code structure: on-the-fly evaluation during training.
  • Code structure: wrapping of the model.
  • Add tf.data support, but with queue-based reader is faster.
  • print results using python utils.py in experiment_manager dir.
  • The default environment is Python 3 and TF1.12. OpenCV is needed for predicting and demo_infer.
  • The previous version becomes a branch of this repo named as v0.9.

External links

Pyramid Scene Parsing Network paper and official github.

Owner
Li Xuhong
Researcher at Baidu Research, focus on interpretable deep learning and transfer learning.
Li Xuhong
Generating Videos with Scene Dynamics

Generating Videos with Scene Dynamics This repository contains an implementation of Generating Videos with Scene Dynamics by Carl Vondrick, Hamed Pirs

Carl Vondrick 706 Jan 04, 2023
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in clustering (CVPR2021)

PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering Jang Hyun Cho1, Utkarsh Mall2, Kavita Bala2, Bharath Harihar

Jang Hyun Cho 164 Dec 30, 2022
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Understanding the Generalization Benefit of Model Invariance from a Data Perspective This is the code for our NeurIPS2021 paper "Understanding the Gen

1 Jan 15, 2022
Code for the paper "Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are in envir

Michael Janner 269 Jan 05, 2023
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022