An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022

Overview

Dual Correlation Reduction Network

GitHub stars GitHub forks visitors

An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any communications or issues are welcomed. Please contact [email protected]. If you find this repository useful to your research or work, it is really appreciate to star this repository. ❤️


Overview

Deep graph clustering, which aims to reveal the underlying graph structure and divide the nodes into different groups, has attracted intensive attention in recent years. However, we observe that, in the process of node encoding, existing methods suffer from representation collapse which tends to map all data into a same representation. Consequently, the discriminative capability of node representations is limited, leading to unsatisfied clustering performance. To address this issue, we propose a novel self-supervised deep graph clustering method termed Dual Correlation Reduction Network (DCRN) by reducing information correlation in a dual manner. Specifically, in our method, we first design a siamese network to encode samples. Then by forcing the cross-view sample correlation matrix and cross-view feature correlation matrix to approximate two identity matrices, respectively, we reduce the information correlation in dual level, thus improve the discriminative capability of the resulting features. Moreover, in order to alleviate representation collapse caused by over-smoothing in GCN, we introduce a propagation-regularization term to enable the network to gain long-distance information with shallow network structure. Extensive experimental results on six benchmark datasets demonstrate the effectiveness of the proposed DCRN against the existing state-of-the-art methods.

Illustration of the Dual Correlation Reduction Network (DCRN).

requirements

The proposed DCRN is implemented with python 3.8.5 on a NVIDIA 3090 GPU.

Python package information is summarized in requirements.txt:

  • torch==1.8.0
  • tqdm==4.50.2
  • numpy==1.19.2
  • munkres==1.1.4
  • scikit_learn==1.0.1

Quick Start

  • step1: using dblp.zip or download other datasets from Awesome Deep Graph Clustering
  • step2: unzip the dataset into ./dataset
  • step2: run python main.py --name dblp. The name parameter is the name of dataset

Results

Citation

If you use this code for your research, please cite our paper.

@inproceedings{
}
Owner
yueliu1999
Yue Liu is pursuing his master degree in College of Computer, NUDT. His current research interests include GNN, Deep Clustering and Self-Supervised Learning.
yueliu1999
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
Rethinking Nearest Neighbors for Visual Classification

Rethinking Nearest Neighbors for Visual Classification arXiv Environment settings Check out scripts/env_setup.sh Setup data Download the following fin

Menglin Jia 29 Oct 11, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation

RCIL [CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation Chang-Bin Zhang1, Jia-Wen Xiao1, Xialei Liu1, Ying-Cong Chen2

Chang-Bin Zhang 71 Dec 28, 2022
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022