[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

Overview

GP-UNIT - Official PyTorch Implementation

This repository provides the official PyTorch implementation for the following paper:

Unsupervised Image-to-Image Translation with Generative Prior
Shuai Yang, Liming Jiang, Ziwei Liu and Chen Change Loy
In CVPR 2022.
Project Page | Paper | Supplementary Video

Abstract: Unsupervised image-to-image translation aims to learn the translation between two visual domains without paired data. Despite the recent progress in image translation models, it remains challenging to build mappings between complex domains with drastic visual discrepancies. In this work, we present a novel framework, Generative Prior-guided UNsupervised Image-to-image Translation (GP-UNIT), to improve the overall quality and applicability of the translation algorithm. Our key insight is to leverage the generative prior from pre-trained class-conditional GANs (e.g., BigGAN) to learn rich content correspondences across various domains. We propose a novel coarse-to-fine scheme: we first distill the generative prior to capture a robust coarse-level content representation that can link objects at an abstract semantic level, based on which fine-level content features are adaptively learned for more accurate multi-level content correspondences. Extensive experiments demonstrate the superiority of our versatile framework over state-of-the-art methods in robust, high-quality and diversified translations, even for challenging and distant domains.

Updates

  • [03/2022] Paper and supplementary video are released.
  • [04/2022] Code and dataset are released.
  • [03/2022] This website is created.

Installation

Clone this repo:

git clone https://github.com/williamyang1991/GP-UNIT.git
cd GP-UNIT

Dependencies:

We have tested on:

  • CUDA 10.1
  • PyTorch 1.7.0
  • Pillow 8.0.1; Matplotlib 3.3.3; opencv-python 4.4.0; Faiss 1.7.0; tqdm 4.54.0

All dependencies for defining the environment are provided in environment/gpunit_env.yaml. We recommend running this repository using Anaconda:

conda env create -f ./environment/gpunit_env.yaml

We use CUDA 10.1 so it will install PyTorch 1.7.0 (corresponding to Line 16, Line 113, Line 120, Line 121 of gpunit_env.yaml). Please install PyTorch that matches your own CUDA version following https://pytorch.org/.


(1) Dataset Preparation

Human face dataset, animal face dataset and aristic human face dataset can be downloaded from their official pages. Bird, dog and car datasets can be built from ImageNet with our provided script.

Task Used Dataset
Male←→Female CelebA-HQ: divided into male and female subsets by StarGANv2
Dog←→Cat←→Wild AFHQ provided by StarGANv2
Face←→Cat or Dog CelebA-HQ and AFHQ
Bird←→Dog 4 classes of birds and 4 classes of dogs in ImageNet291. Please refer to dataset preparation for building ImageNet291 from ImageNet
Bird←→Car 4 classes of birds and 4 classes of cars in ImageNet291. Please refer to dataset preparation for building ImageNet291 from ImageNet
Face→MetFace CelebA-HQ and MetFaces

(2) Inference for Latent-Guided and Exemplar-Guided Translation

Inference Notebook


To help users get started, we provide a Jupyter notebook at ./notebooks/inference_playground.ipynb that allows one to visualize the performance of GP-UNIT. The notebook will download the necessary pretrained models and run inference on the images in ./data/.

Web Demo

Try Replicate web demo here Replicate

Pretrained Models

Pretrained models can be downloaded from Google Drive or Baidu Cloud (access code: cvpr):

Task Pretrained Models
Prior Distillation content encoder
Male←→Female generators for male2female and female2male
Dog←→Cat←→Wild generators for dog2cat, cat2dog, dog2wild, wild2dog, cat2wild and wild2cat
Face←→Cat or Dog generators for face2cat, cat2face, dog2face and face2dog
Bird←→Dog generators for bird2dog and dog2bird
Bird←→Car generators for bird2car and car2bird
Face→MetFace generator for face2metface

The saved checkpoints are under the following folder structure:

checkpoint
|--content_encoder.pt     % Content encoder
|--bird2car.pt            % Bird-to-Car translation model
|--bird2dog.pt            % Bird-to-Dog translation model
...

Latent-Guided Translation

Translate a content image to the target domain with randomly sampled latent styles:

python inference.py --generator_path PRETRAINED_GENERATOR_PATH --content_encoder_path PRETRAINED_ENCODER_PATH \ 
                    --content CONTENT_IMAGE_PATH --batch STYLE_NUMBER --device DEVICE

By default, the script will use .\checkpoint\dog2cat.pt as PRETRAINED_GENERATOR_PATH, .\checkpoint\content_encoder.pt as PRETRAINED_ENCODER_PATH, and cuda as DEVICE for using GPU. For running on CPUs, use --device cpu.

Take Dog→Cat as an example, run:

python inference.py --content ./data/afhq/images512x512/test/dog/flickr_dog_000572.jpg --batch 6

Six results translation_flickr_dog_000572_N.jpg (N=0~5) are saved in the folder .\output\. An corresponding overview image translation_flickr_dog_000572_overview.jpg is additionally saved to illustrate the input content image and the six results:

Evaluation Metrics: We use the code of StarGANv2 to calculate FID and Diversity with LPIPS in our paper.

Exemplar-Guided Translation

Translate a content image to the target domain in the style of a style image by additionally specifying --style:

python inference.py --generator_path PRETRAINED_GENERATOR_PATH --content_encoder_path PRETRAINED_ENCODER_PATH \ 
                    --content CONTENT_IMAGE_PATH --style STYLE_IMAGE_PATH --device DEVICE

Take Dog→Cat as an example, run:

python inference.py --content ./data/afhq/images512x512/test/dog/flickr_dog_000572.jpg --style ./data/afhq/images512x512/test/cat/flickr_cat_000418.jpg

The result translation_flickr_dog_000572_to_flickr_cat_000418.jpg is saved in the folder .\output\. An corresponding overview image translation_flickr_dog_000572_to_flickr_cat_000418_overview.jpg is additionally saved to illustrate the input content image, the style image, and the result:

Another example of Cat→Wild, run:

python inference.py --generator_path ./checkpoint/cat2wild.pt --content ./data/afhq/images512x512/test/cat/flickr_cat_000418.jpg --style ./data/afhq/images512x512/test/wild/flickr_wild_001112.jpg

The overview image is as follows:


(3) Training GP-UNIT

Download the supporting models to the ./checkpoint/ folder:

Model Description
content_encoder.pt Our pretrained content encoder which distills BigGAN prior from the synImageNet291 dataset.
model_ir_se50.pth Pretrained IR-SE50 model taken from TreB1eN for ID loss.

Train Image-to-Image Transaltion Network

python train.py --task TASK --batch BATCH_SIZE --iter ITERATIONS \
                --source_paths SPATH1 SPATH2 ... SPATHS --source_num SNUM1 SNUM2 ... SNUMS \
                --target_paths TPATH1 TPATH2 ... TPATHT --target_num TNUM1 TNUM2 ... TNUMT

where SPATH1~SPATHS are paths to S folders containing images from the source domain (e.g., S classes of ImageNet birds), SNUMi is the number of images in SPATHi used for training. TPATHi, TNUMi are similarily defined but for the target domain. By default, BATCH_SIZE=16 and ITERATIONS=75000. If --source_num/--target_num is not specified, all images in the folders are used.

The trained model is saved as ./checkpoint/TASK-ITERATIONS.pt. Intermediate results are saved in ./log/TASK/.

This training does not necessarily lead to the optimal results, which can be further customized with additional command line options:

  • --style_layer (default: 4): the discriminator layer to compute the feature matching loss. We found setting style_layer=5 gives better performance on human faces.
  • --use_allskip (default: False): whether using dynamic skip connections to compute the reconstruction loss. For tasks involving close domains like gender translation, season transfer and face stylization, using use_allskip gives better results.
  • --use_idloss (default: False): whether using the identity loss. For Cat/Dog→Face and Face→MetFace tasks, we use this loss.
  • --not_flip_style (default: False): whether not randomly flipping the style image when extracting the style feature. Random flipping prevents the network to learn position information from the style image.
  • --mitigate_style_bias(default: False): whether resampling style features when training the sampling network. For imbalanced dataset that has minor groups, mitigate_style_bias oversamples those style features that are far from the mean style feature of the whole dataset. This leads to more diversified latent-guided translation at the cost of slight image quality degradation. We use it on CelebA-HQ and AFHQ-related tasks.

Here are some examples:
(Parts of our tasks require the ImageNet291 dataset. Please refer to data preparation)

Male→Female

python train.py --task male2female --source_paths ./data/celeba_hq/train/male --target_paths ./data/celeba_hq/train/female --style_layer 5 --mitigate_style_bias --use_allskip --not_flip_style

Cat→Dog

python train.py --task cat2dog --source_paths ./data/afhq/images512x512/train/cat --source_num 4000 --target_paths ./data/afhq/images512x512/train/dog --target_num 4000 --mitigate_style_bias

Cat→Face

python train.py --task cat2face --source_paths ./data/afhq/images512x512/train/cat --source_num 4000 --target_paths ./data/ImageNet291/train/1001_face/ --style_layer 5 --mitigate_style_bias --not_flip_style --use_idloss

Bird→Car (translating 4 classes of birds to 4 classes of cars)

python train.py --task bird2car --source_paths ./data/ImageNet291/train/10_bird/ ./data/ImageNet291/train/11_bird/ ./data/ImageNet291/train/12_bird/ ./data/ImageNet291/train/13_bird/ --source_num 600 600 600 600 --target_paths ./data/ImageNet291/train/436_vehicle/ ./data/ImageNet291/train/511_vehicle/ ./data/ImageNet291/train/627_vehicle/ ./data/ImageNet291/train/656_vehicle/ --target_num 600 600 600 600

Train Content Encoder of Prior Distillation

We provide our pretrained model content_encoder.pt at Google Drive or Baidu Cloud (access code: cvpr). This model is obtained by:

python prior_distillation.py --unpaired_data_root ./data/ImageNet291/train/ --paired_data_root ./data/synImageNet291/train/ --unpaired_mask_root ./data/ImageNet291_mask/train/ --paired_mask_root ./data/synImageNet291_mask/train/

The training requires ImageNet291 and synImageNet291 datasets. Please refer to data preparation.


Results

Male-to-Female: close domains

male2female

Cat-to-Dog: related domains

cat2dog

Dog-to-Human and Bird-to-Dog: distant domains

dog2human

bird2dog

Bird-to-Car: extremely distant domains for stress testing

bird2car

Citation

If you find this work useful for your research, please consider citing our paper:

@inproceedings{yang2022Unsupervised,
  title={Unsupervised Image-to-Image Translation with Generative Prior},
  author={Yang, Shuai and Jiang, Liming and Liu, Ziwei and Loy, Chen Change},
  booktitle={CVPR},
  year={2022}
}

Acknowledgments

The code is developed based on StarGAN v2, SPADE and Imaginaire.

Owner
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

122 Dec 28, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python

Python Experiments A Repository which contains python scripts to automate things

Vivek Kumar Singh 11 Sep 25, 2022
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
PaddleBoBo是基于PaddlePaddle和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目

PaddleBoBo - 元宇宙时代,你也可以动手做一个虚拟主播。 PaddleBoBo是基于飞桨PaddlePaddle深度学习框架和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目。PaddleBoBo致力于简单高效、可复用性强,只需要一张带人像的图片和一段文字,就能

502 Jan 08, 2023
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
Prevent `CUDA error: out of memory` in just 1 line of code.

🐨 Koila Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it. 🚀 Features 🙅 Prevents CUDA error

RenChu Wang 1.7k Jan 02, 2023
《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Update 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code. 2019.11.12: Release tensorflow-version DBG inference code. 2019.1

Tencent 338 Dec 16, 2022