[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

Overview

GP-UNIT - Official PyTorch Implementation

This repository provides the official PyTorch implementation for the following paper:

Unsupervised Image-to-Image Translation with Generative Prior
Shuai Yang, Liming Jiang, Ziwei Liu and Chen Change Loy
In CVPR 2022.
Project Page | Paper | Supplementary Video

Abstract: Unsupervised image-to-image translation aims to learn the translation between two visual domains without paired data. Despite the recent progress in image translation models, it remains challenging to build mappings between complex domains with drastic visual discrepancies. In this work, we present a novel framework, Generative Prior-guided UNsupervised Image-to-image Translation (GP-UNIT), to improve the overall quality and applicability of the translation algorithm. Our key insight is to leverage the generative prior from pre-trained class-conditional GANs (e.g., BigGAN) to learn rich content correspondences across various domains. We propose a novel coarse-to-fine scheme: we first distill the generative prior to capture a robust coarse-level content representation that can link objects at an abstract semantic level, based on which fine-level content features are adaptively learned for more accurate multi-level content correspondences. Extensive experiments demonstrate the superiority of our versatile framework over state-of-the-art methods in robust, high-quality and diversified translations, even for challenging and distant domains.

Updates

  • [03/2022] Paper and supplementary video are released.
  • [04/2022] Code and dataset are released.
  • [03/2022] This website is created.

Installation

Clone this repo:

git clone https://github.com/williamyang1991/GP-UNIT.git
cd GP-UNIT

Dependencies:

We have tested on:

  • CUDA 10.1
  • PyTorch 1.7.0
  • Pillow 8.0.1; Matplotlib 3.3.3; opencv-python 4.4.0; Faiss 1.7.0; tqdm 4.54.0

All dependencies for defining the environment are provided in environment/gpunit_env.yaml. We recommend running this repository using Anaconda:

conda env create -f ./environment/gpunit_env.yaml

We use CUDA 10.1 so it will install PyTorch 1.7.0 (corresponding to Line 16, Line 113, Line 120, Line 121 of gpunit_env.yaml). Please install PyTorch that matches your own CUDA version following https://pytorch.org/.


(1) Dataset Preparation

Human face dataset, animal face dataset and aristic human face dataset can be downloaded from their official pages. Bird, dog and car datasets can be built from ImageNet with our provided script.

Task Used Dataset
Male←→Female CelebA-HQ: divided into male and female subsets by StarGANv2
Dog←→Cat←→Wild AFHQ provided by StarGANv2
Face←→Cat or Dog CelebA-HQ and AFHQ
Bird←→Dog 4 classes of birds and 4 classes of dogs in ImageNet291. Please refer to dataset preparation for building ImageNet291 from ImageNet
Bird←→Car 4 classes of birds and 4 classes of cars in ImageNet291. Please refer to dataset preparation for building ImageNet291 from ImageNet
Face→MetFace CelebA-HQ and MetFaces

(2) Inference for Latent-Guided and Exemplar-Guided Translation

Inference Notebook


To help users get started, we provide a Jupyter notebook at ./notebooks/inference_playground.ipynb that allows one to visualize the performance of GP-UNIT. The notebook will download the necessary pretrained models and run inference on the images in ./data/.

Web Demo

Try Replicate web demo here Replicate

Pretrained Models

Pretrained models can be downloaded from Google Drive or Baidu Cloud (access code: cvpr):

Task Pretrained Models
Prior Distillation content encoder
Male←→Female generators for male2female and female2male
Dog←→Cat←→Wild generators for dog2cat, cat2dog, dog2wild, wild2dog, cat2wild and wild2cat
Face←→Cat or Dog generators for face2cat, cat2face, dog2face and face2dog
Bird←→Dog generators for bird2dog and dog2bird
Bird←→Car generators for bird2car and car2bird
Face→MetFace generator for face2metface

The saved checkpoints are under the following folder structure:

checkpoint
|--content_encoder.pt     % Content encoder
|--bird2car.pt            % Bird-to-Car translation model
|--bird2dog.pt            % Bird-to-Dog translation model
...

Latent-Guided Translation

Translate a content image to the target domain with randomly sampled latent styles:

python inference.py --generator_path PRETRAINED_GENERATOR_PATH --content_encoder_path PRETRAINED_ENCODER_PATH \ 
                    --content CONTENT_IMAGE_PATH --batch STYLE_NUMBER --device DEVICE

By default, the script will use .\checkpoint\dog2cat.pt as PRETRAINED_GENERATOR_PATH, .\checkpoint\content_encoder.pt as PRETRAINED_ENCODER_PATH, and cuda as DEVICE for using GPU. For running on CPUs, use --device cpu.

Take Dog→Cat as an example, run:

python inference.py --content ./data/afhq/images512x512/test/dog/flickr_dog_000572.jpg --batch 6

Six results translation_flickr_dog_000572_N.jpg (N=0~5) are saved in the folder .\output\. An corresponding overview image translation_flickr_dog_000572_overview.jpg is additionally saved to illustrate the input content image and the six results:

Evaluation Metrics: We use the code of StarGANv2 to calculate FID and Diversity with LPIPS in our paper.

Exemplar-Guided Translation

Translate a content image to the target domain in the style of a style image by additionally specifying --style:

python inference.py --generator_path PRETRAINED_GENERATOR_PATH --content_encoder_path PRETRAINED_ENCODER_PATH \ 
                    --content CONTENT_IMAGE_PATH --style STYLE_IMAGE_PATH --device DEVICE

Take Dog→Cat as an example, run:

python inference.py --content ./data/afhq/images512x512/test/dog/flickr_dog_000572.jpg --style ./data/afhq/images512x512/test/cat/flickr_cat_000418.jpg

The result translation_flickr_dog_000572_to_flickr_cat_000418.jpg is saved in the folder .\output\. An corresponding overview image translation_flickr_dog_000572_to_flickr_cat_000418_overview.jpg is additionally saved to illustrate the input content image, the style image, and the result:

Another example of Cat→Wild, run:

python inference.py --generator_path ./checkpoint/cat2wild.pt --content ./data/afhq/images512x512/test/cat/flickr_cat_000418.jpg --style ./data/afhq/images512x512/test/wild/flickr_wild_001112.jpg

The overview image is as follows:


(3) Training GP-UNIT

Download the supporting models to the ./checkpoint/ folder:

Model Description
content_encoder.pt Our pretrained content encoder which distills BigGAN prior from the synImageNet291 dataset.
model_ir_se50.pth Pretrained IR-SE50 model taken from TreB1eN for ID loss.

Train Image-to-Image Transaltion Network

python train.py --task TASK --batch BATCH_SIZE --iter ITERATIONS \
                --source_paths SPATH1 SPATH2 ... SPATHS --source_num SNUM1 SNUM2 ... SNUMS \
                --target_paths TPATH1 TPATH2 ... TPATHT --target_num TNUM1 TNUM2 ... TNUMT

where SPATH1~SPATHS are paths to S folders containing images from the source domain (e.g., S classes of ImageNet birds), SNUMi is the number of images in SPATHi used for training. TPATHi, TNUMi are similarily defined but for the target domain. By default, BATCH_SIZE=16 and ITERATIONS=75000. If --source_num/--target_num is not specified, all images in the folders are used.

The trained model is saved as ./checkpoint/TASK-ITERATIONS.pt. Intermediate results are saved in ./log/TASK/.

This training does not necessarily lead to the optimal results, which can be further customized with additional command line options:

  • --style_layer (default: 4): the discriminator layer to compute the feature matching loss. We found setting style_layer=5 gives better performance on human faces.
  • --use_allskip (default: False): whether using dynamic skip connections to compute the reconstruction loss. For tasks involving close domains like gender translation, season transfer and face stylization, using use_allskip gives better results.
  • --use_idloss (default: False): whether using the identity loss. For Cat/Dog→Face and Face→MetFace tasks, we use this loss.
  • --not_flip_style (default: False): whether not randomly flipping the style image when extracting the style feature. Random flipping prevents the network to learn position information from the style image.
  • --mitigate_style_bias(default: False): whether resampling style features when training the sampling network. For imbalanced dataset that has minor groups, mitigate_style_bias oversamples those style features that are far from the mean style feature of the whole dataset. This leads to more diversified latent-guided translation at the cost of slight image quality degradation. We use it on CelebA-HQ and AFHQ-related tasks.

Here are some examples:
(Parts of our tasks require the ImageNet291 dataset. Please refer to data preparation)

Male→Female

python train.py --task male2female --source_paths ./data/celeba_hq/train/male --target_paths ./data/celeba_hq/train/female --style_layer 5 --mitigate_style_bias --use_allskip --not_flip_style

Cat→Dog

python train.py --task cat2dog --source_paths ./data/afhq/images512x512/train/cat --source_num 4000 --target_paths ./data/afhq/images512x512/train/dog --target_num 4000 --mitigate_style_bias

Cat→Face

python train.py --task cat2face --source_paths ./data/afhq/images512x512/train/cat --source_num 4000 --target_paths ./data/ImageNet291/train/1001_face/ --style_layer 5 --mitigate_style_bias --not_flip_style --use_idloss

Bird→Car (translating 4 classes of birds to 4 classes of cars)

python train.py --task bird2car --source_paths ./data/ImageNet291/train/10_bird/ ./data/ImageNet291/train/11_bird/ ./data/ImageNet291/train/12_bird/ ./data/ImageNet291/train/13_bird/ --source_num 600 600 600 600 --target_paths ./data/ImageNet291/train/436_vehicle/ ./data/ImageNet291/train/511_vehicle/ ./data/ImageNet291/train/627_vehicle/ ./data/ImageNet291/train/656_vehicle/ --target_num 600 600 600 600

Train Content Encoder of Prior Distillation

We provide our pretrained model content_encoder.pt at Google Drive or Baidu Cloud (access code: cvpr). This model is obtained by:

python prior_distillation.py --unpaired_data_root ./data/ImageNet291/train/ --paired_data_root ./data/synImageNet291/train/ --unpaired_mask_root ./data/ImageNet291_mask/train/ --paired_mask_root ./data/synImageNet291_mask/train/

The training requires ImageNet291 and synImageNet291 datasets. Please refer to data preparation.


Results

Male-to-Female: close domains

male2female

Cat-to-Dog: related domains

cat2dog

Dog-to-Human and Bird-to-Dog: distant domains

dog2human

bird2dog

Bird-to-Car: extremely distant domains for stress testing

bird2car

Citation

If you find this work useful for your research, please consider citing our paper:

@inproceedings{yang2022Unsupervised,
  title={Unsupervised Image-to-Image Translation with Generative Prior},
  author={Yang, Shuai and Jiang, Liming and Liu, Ziwei and Loy, Chen Change},
  booktitle={CVPR},
  year={2022}
}

Acknowledgments

The code is developed based on StarGAN v2, SPADE and Imaginaire.

Owner
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver

Shape As Points (SAP) Paper | Project Page | Short Video (6 min) | Long Video (12 min) This repository contains the implementation of the paper: Shape

394 Dec 30, 2022
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu

1 Feb 11, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
A high-performance Python-based I/O system for large (and small) deep learning problems, with strong support for PyTorch.

WebDataset WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and us

1.1k Jan 08, 2023
MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings

offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape

LxzGordon 1 Oct 24, 2021
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022
This repository provides an efficient PyTorch-based library for training deep models.

s3sec Test AWS S3 buckets for read/write/delete access This tool was developed to quickly test a list of s3 buckets for public read, write and delete

Bytedance Inc. 123 Jan 05, 2023
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022