Prevent `CUDA error: out of memory` in just 1 line of code.

Overview

🐨 Koila

Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it.

Type Checking Formatting Unit testing License: MIT Tweet

Koila

🚀 Features

  • 🙅 Prevents CUDA error: out of memory error with one single line of code.

  • 🦥 Lazily evaluates pytorch code to save computing power.

  • ✂️ Automatically splits along the batch dimension to more GPU friendly numbers (2's powers) to speed up the execution.

  • 🤏 Minimal API (wrapping all inputs will be enough).

🤔 Why Koila?

Ever encountered RuntimeError: CUDA error: out of memory? We all love PyTorch because of its speed, efficiency, and transparency, but that means it doesn't do extra things. Things like preventing a very common error that has been bothering many users since 2017.

This library aims to prevent that by being a light-weight wrapper over native PyTorch. When a tensor is wrapped, the library automatically computes the amount of remaining GPU memory and uses the right batch size, saving everyone from having to manually finetune the batch size whenever a model is used.

Also, the library automatically uses the right batch size to GPU. Did you know that using bigger batches doesn't always speed up processing? It's handled automatically in this library too.

Because Koila code is PyTorch code, as it runs PyTorch under the hood, you can use both together without worrying compatibility.

Oh, and all that in 1 line of code! 😊

⬇️ Installation

Koila is available on PyPI. To install, run the following command.

pip install koila

🏃 Getting started

The usage is dead simple. For example, you have the following PyTorch code (copied from PyTorch's tutorial)

Define the input, label, and model:

# A batch of MNIST image
input = torch.randn(8, 28, 28)

# A batch of labels
label = torch.randn(0, 10, [8])

class NeuralNetwork(Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = Flatten()
        self.linear_relu_stack = Sequential(
            Linear(28 * 28, 512),
            ReLU(),
            Linear(512, 512),
            ReLU(),
            Linear(512, 10),
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

Define the loss function, calculate output and losses.

loss_fn = CrossEntropyLoss()

# Calculate losses
out = nn(t)
loss = loss_fn(out, label)

# Backward pass
nn.zero_grad()
loss.backward()

Ok. How to adapt the code to use Koila's features?

You change this line of code:

# Wrap the input tensor.
# If a batch argument is provided, that dimension of the tensor would be treated as the batch.
# In this case, the first dimension (dim=0) is used as batch's dimension.
input = lazy(torch.randn(8, 28, 28), batch=0)

Done. You will not run out of memory again.

See examples/getting-started.py for the full example.

🏋️ How does it work under the hood?

CUDA error: out of memory generally happens in forward pass, because temporary variables will need to be saved in memory.

Koila is a thin wrapper around PyTorch. It is inspired by TensorFlow's static/lazy evaluation. By building the graph first, and run the model only when necessarily, the model has access to all the information necessarily to determine how much resources is really need to compute the model.

In terms of memory usage, only shapes of temporary variables are required to calculate the memory usage of those variables used in the model. For example, + takes in two tensors with equal sizes, and outputs a tensor with a size equal to the input size, and log takes in one tensor, and outputs another tensor with the same shape. Broadcasting makes it a little more complicated than that, but the general ideas are the same. By tracking all these shapes, one could easily tell how much memory is used in a forward pass. And select the optimal batch size accordingly.

🐌 It sounds slow. Is it?

NO. Indeed, calculating shapes and computing the size and memory usage sound like a lot of work. However, keep in mind that even a gigantic model like GPT-3, which has 96 layers, has only a few hundred nodes in its computing graph. Because Koila's algorithms run in linear time, any modern computer will be able to handle a graph like this instantly.

Most of the computing is spent on computing individual tensors, and transferring tensors across devices. And bear in mind that those checks happen in vanilla PyTorch anyways. So no, not slow at all.

🔊 How to pronounce koila?

This project was originally named koala, the laziest species in the world, and this project is about lazy evaluation of tensors. However, as that name is taken on PyPI, I had no choice but to use another name. Koila is a word made up by me, pronounced similarly to voila (It's a French word), so sounds like koala.

Give me a star!

If you like what you see, please consider giving this a star (★)!

🏗️ Why did I build this?

Batch size search is not new. In fact, the mighty popular PyTorch Lightning has it. So why did I go through the trouble and build this project?

PyTorch Lightning's batch size search is deeply integrated in its own ecosystem. You have to use its DataLoader, subclass from their models, and train your models accordingly. While it works well with supervised learning tasks, it's really painful to use in a reinforcement learning task, where interacting with the environment is a must.

In comparison, because Koila is a super lightweight PyTorch wrapper, it works when PyTorch works, thus providing maximum flexibility and minimal changes to existing code.

📝 Todos

  • 🧩 Provide an extensible API to write custom functions for the users.
  • 😌 Simplify internal workings even further. (Especially interaction between Tensors and LazyTensors).
  • 🍪 Work with multiple GPUs.

🚧 Warning

The code works on many cases, but it's still a work in progress. This is not (yet) a fully PyTorch compatible library due to limited time.

🥰 Contributing

We take openness and inclusiveness very seriously. We have adopted the following Code of Conduct.

The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目

定时面板上的签到盒 一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 特别声明 本仓库发布的脚本及其中涉及的任何解锁和解密分析脚本,仅用于测试和学习研究,禁止用于商业用途,不能保证其合

Leon 1.1k Dec 30, 2022
Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

João 51 Aug 29, 2022
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
Dynamic Head: Unifying Object Detection Heads with Attentions

Dynamic Head: Unifying Object Detection Heads with Attentions dyhead_video.mp4 This is the official implementation of CVPR 2021 paper "Dynamic Head: U

Microsoft 550 Dec 21, 2022
Some useful blender add-ons for SMPL skeleton's poses and global translation.

Blender add-ons for SMPL skeleton's poses and trans There are two blender add-ons for SMPL skeleton's poses and trans.The first is for making an offli

犹在镜中 154 Jan 04, 2023
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022