An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Related tags

Deep LearningJoEm
Overview

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation

This is an official implementation of the paper "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation", accepted to ICCV2021.

For more information, please checkout the project site [website] and the paper [arXiv].

Pre-requisites

This repository uses the following libraries:

  • Python (3.6)
  • Pytorch (1.8.1)

Getting Started

Datasets

VOC

The structure of data path should be organized as follows:

/dataset/PASCALVOC/VOCdevkit/VOC2012/                         % Pascal VOC datasets root
/dataset/PASCALVOC/VOCdevkit/VOC2012/JPEGImages/              % Pascal VOC images
/dataset/PASCALVOC/VOCdevkit/VOC2012/SegmentationClass/       % Pascal VOC segmentation maps
/dataset/PASCALVOC/VOCdevkit/VOC2012/ImageSets/Segmentation/  % Pascal VOC splits

CONTEXT

The structure of data path should be organized as follows:

/dataset/context/                                 % Pascal CONTEXT dataset root
/dataset/context/59_labels.pth                    % Pascal CONTEXT segmentation maps
/dataset/context/pascal_context_train.txt         % Pascal CONTEXT splits
/dataset/context/pascal_context_val.txt           % Pascal CONTEXT splits
/dataset/PASCALVOC/VOCdevkit/VOC2012/JPEGImages/  % Pascal VOC images

Training

We use DeepLabV3+ with ResNet-101 as our visual encoder. Following ZS3Net, ResNet-101 is initialized with the pre-trained weights for ImageNet classification, where training samples of seen classes are used only. (weights here)

VOC

python train_pascal_zs3setting.py -c configs/config_pascal_zs3setting.json -d 0,1,2,3

CONTEXT

python train_context_zs3setting.py -c configs/config_context_zs3setting.json -d 0,1,2,3

Testing

VOC

python train_pascal_zs3setting.py -c configs/config_pascal_zs3setting.json -d 0,1,2,3 -r <visual encoder>.pth --test

CONTEXT

python train_pascal_zs3setting.py -c configs/config_pascal_zs3setting.json -d 0,1,2,3 -r <visual encoder>.pth --test

Acknowledgements

You might also like...
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

 Official implementation of the ICCV 2021 paper
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergence, and present a conditional cross-attention mechanism for fast DETR training. Our approach is motivated by that the cross-attention in DETR relies highly on the content embeddings and that the spatial embeddings make minor contributions, increasing the need for high-quality content embeddings and thus increasing the training difficulty.

The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Official implementation of the ICCV 2021 paper:
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Official implementation of the ICCV 2021 paper
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

[ICCV 2021] Official Tensorflow Implementation for
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Comments
  • datasets

    datasets

    Thank you for your work~

    self._cat_dir = self._base_dir / ("%d_labels.pth" % (self.n_categories))

    Could you tell me how to generate the "59_labels.pth" file of the context dataset?

    opened by Wangyiqi 1
  • train_aug.txt

    train_aug.txt

    Dear Authors,

    When I run your code, there is an error:

    FileNotFoundError: [Errno 2] No such file or directory: 'dataset/PASCALVOC/VOCdevkit/VOC2012/ImageSets/Segmentation/train_aug.txt'

    Could you tell me how to get train_aug.txt?

    opened by AmingWu 1
  • dataset split

    dataset split

    After introducing the SBD (Semantic Boundary Dataset), what kind of split (train_split and test_split include how many images ) is adopted by this paper?

    opened by zaiquanyang 0
Owner
CV Lab @ Yonsei University
CV Lab @ Yonsei University
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
TGS Salt Identification Challenge

TGS Salt Identification Challenge This is an open solution to the TGS Salt Identification Challenge. Note Unfortunately, we can no longer provide supp

neptune.ai 123 Nov 04, 2022
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020
Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

LOREN Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification". DEMO System Check out o

Jiangjie Chen 37 Dec 27, 2022
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
an implementation of softmax splatting for differentiable forward warping using PyTorch

softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I

Simon Niklaus 338 Dec 28, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
Research using Cirq!

ReCirq Research using Cirq! This project contains modules for running quantum computing applications and experiments through Cirq and Quantum Engine.

quantumlib 230 Dec 29, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Implementation of Stochastic Image-to-Video Synthesis using cINNs.

Stochastic Image-to-Video Synthesis using cINNs Official PyTorch implementation of Stochastic Image-to-Video Synthesis using cINNs accepted to CVPR202

CompVis Heidelberg 135 Dec 28, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021