The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

Overview

SCOOD-UDG (ICCV 2021)

paper   projectpage   gdrive  onedrive

This repository is the official implementation of the paper:

Semantically Coherent Out-of-Distribution Detection
Jingkang Yang, Haoqi Wang, Litong Feng, Xiaopeng Yan, Huabin Zheng, Wayne Zhang, Ziwei Liu
Proceedings of the IEEE International Conference on Computer Vision (ICCV 2021)

udg

Dependencies

We use conda to manage our dependencies, and CUDA 10.1 to run our experiments.

You can specify the appropriate cudatoolkit version to install on your machine in the environment.yml file, and then run the following to create the conda environment:

conda env create -f environment.yml
conda activate scood

SC-OOD Dataset

scood

The SC-OOD dataset introduced in the paper can be downloaded here.

gdrive onedrive

Our codebase accesses the dataset from the root directory in a folder named data/ by default, i.e.

├── ...
├── data
│   ├── images
│   └── imglist
├── scood
├── test.py
├── train.py
├── ...

Training

The entry point for training is the train.py script. The hyperparameters for each experiment is specified by a .yml configuration file (examples given in configs/train/).

All experiment artifacts are saved in the specified args.output_dir directory.

python train.py \
    --config configs/train/cifar10_udg.yml \
    --data_dir data \
    --output_dir output/cifar10_udg

Testing

Evaluation for a trained model is performed by the test.py script, with its hyperparameters also specified by a .yml configuration file (examples given in configs/test/)

Within the configuration file, you can also specify which post-processing OOD method to use (e.g. ODIN or Energy-based OOD detector (EBO)).

The evaluation results are saved in a .csv file as specified.

python test.py \
    --config configs/test/cifar10.yml \
    --checkpoint output/cifar10_udg/best.ckpt \
    --data_dir data \
    --csv_path output/cifar10_udg/results.csv

Results

CIFAR-10 (+ Tiny-ImageNet) Results on ResNet18

You can run the following script (specifying the data and output directories) which perform training + testing for our main experimental results:

CIFAR-10, UDG

bash scripts/cifar10_udg.sh data_dir output_dir

We report the mean ± std results from the current codebase as follows, which match the performance reported in our original paper.

Metrics ODIN EBO OE UDG (ours)
FPR95 ↓ 50.76 ± 3.39 50.70 ± 2.86 54.99 ± 4.06 39.94 ± 3.77
AUROC ↑ 82.11 ± 0.24 83.99 ± 1.05 87.48 ± 0.61 93.27 ± 0.64
AUPR In ↑ 73.07 ± 0.40 76.84 ± 1.56 85.75 ± 1.70 93.36 ± 0.56
AUPR Out ↑ 85.06 ± 0.29 85.44 ± 0.73 86.95 ± 0.28 91.21 ± 1.23
[email protected] 0.30 ± 0.04 0.26 ± 0.09 7.09 ± 0.48 16.36 ± 4.33
[email protected] 1.22 ± 0.28 1.46 ± 0.18 13.69 ± 0.78 32.99 ± 4.16
[email protected] 6.13 ± 0.72 8.17 ± 0.96 29.60 ± 5.31 59.14 ± 2.60
[email protected] 39.61 ± 0.72 47.57 ± 3.33 64.33 ± 3.44 81.04 ± 1.46

License and Acknowledgements

This project is open-sourced under the MIT license.

The codebase is refactored by Ang Yi Zhe, and maintained by Jingkang Yang and Ang Yi Zhe.

Citation

If you find our repository useful for your research, please consider citing our paper:

@InProceedings{yang2021scood,
    author = {Yang, Jingkang and Wang, Haoqi and Feng, Litong and Yan, Xiaopeng and Zheng, Huabin and Zhang, Wayne and Liu, Ziwei},
    title = {Semantically Coherent Out-of-Distribution Detection},
    booktitle = {Proceedings of the IEEE International Conference on Computer Vision},
    year = {2021}
}
Owner
Jake YANG
[email protected] PhD Student
Jake YANG
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
Spherical CNNs

Spherical CNNs Equivariant CNNs for the sphere and SO(3) implemented in PyTorch Overview This library contains a PyTorch implementation of the rotatio

Jonas Köhler 893 Dec 28, 2022
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J

226 Nov 05, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 04, 2023
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
A simple root calculater for python

Root A simple root calculater Usage/Examples python3 root.py 9 3 4 # Order: number - grid - number of decimals # Output: 2.08

Reza Hosseinzadeh 5 Feb 10, 2022
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022