DanceTrack: Multiple Object Tracking in Uniform Appearance and Diverse Motion

Overview

DanceTrack

DanceTrack is a benchmark for tracking multiple objects in uniform appearance and diverse motion.

DanceTrack provides box and identity annotations.

DanceTrack contains 100 videos, 40 for training(annotations public), 25 for validation(annotations public) and 35 for testing(annotations unpublic). For evaluating on test set, please see CodaLab.


Paper

DanceTrack: Multi-Object Tracking in Uniform Appearance and Diverse Motion

Dataset

Download the dataset from Google Drive or Baidu Drive (code:awew).

Organize as follows:

{DanceTrack ROOT}
|-- dancetrack
|   |-- train
|   |   |-- dancetrack0001
|   |   |   |-- img1
|   |   |   |   |-- 00000001.jpg
|   |   |   |   |-- ...
|   |   |   |-- gt
|   |   |   |   |-- gt.txt            
|   |   |   |-- seqinfo.ini
|   |   |-- ...
|   |-- val
|   |   |-- ...
|   |-- test
|   |   |-- ...
|   |-- train_seqmap.txt
|   |-- val_seqmap.txt
|   |-- test_seqmap.txt
|-- TrackEval
|-- tools
|-- ...

We align our dataset annotations with MOT, so each line in gt.txt contains:

<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, 1, 1, 1

Evaluation

We use ByteTrack as an example of using DanceTrack. For training details, please see instruction. We provide the trained models in Google Drive or or Baidu Drive (code:awew).

To do evaluation with our provided tookit, we organize the results of validation set as follows:

{DanceTrack ROOT}
|-- val
|   |-- TRACKER_NAME
|   |   |-- dancetrack000x.txt
|   |   |-- ...
|   |-- ...

where dancetrack000x.txt is the output file of the video episode dancetrack000x, each line of which contains:

<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, -1, -1, -1

Then, simply run the evalution code:

python3 TrackEval/scripts/run_mot_challenge.py --SPLIT_TO_EVAL val  --METRICS HOTA CLEAR Identity  --GT_FOLDER dancetrack/val --SEQMAP_FILE dancetrack/val_seqmap.txt --SKIP_SPLIT_FOL True   --TRACKERS_TO_EVAL '' --TRACKER_SUB_FOLDER ''  --USE_PARALLEL True --NUM_PARALLEL_CORES 8 --PLOT_CURVES False --TRACKERS_FOLDER val/TRACKER_NAME 
Tracker HOTA DetA AssA MOTA IDF1
ByteTrack 47.1 70.5 31.5 88.2 51.9

Besides, we also provide the visualization script. The usage is as follow:

python3 tools/txt2video_dance.py --img_path dancetrack --split val --tracker TRACKER_NAME

Competition

Organize the results of test set as follows:

{DanceTrack ROOT}
|-- test
|   |-- tracker
|   |   |-- dancetrack000x.txt
|   |   |-- ...

Each line of dancetrack000x.txt contains:

<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, -1, -1, -1

Archive tracker folder to tracker.zip and submit to CodaLab. Please note: (1) archive tracker folder, instead of txt files. (2) the folder name must be tracker.

The return will be:

Tracker HOTA DetA AssA MOTA IDF1
tracker 47.7 71.0 32.1 89.6 53.9

For more detailed metrics and metrics on each video, click on download output from scoring step in CodaLab.

Run the visualization code:

python3 tools/txt2video_dance.py --img_path dancetrack --split test --tracker tracker

Joint-Training

We use joint-training with other datasets to predict mask, pose and depth. CenterNet is provided as an example. For details of joint-trainig, please see joint-training instruction. We provide the trained models in Google Drive or Baidu Drive(code:awew).

For mask demo, run

cd CenterNet/src
python3 demo.py ctseg --demo  ../../dancetrack/val/dancetrack000x/img1 --load_model ../models/dancetrack_coco_mask.pth --debug 4 --tracking 
cd ../..
python3 tools/img2video.py --img_file CenterNet/exp/ctseg/default/debug --video_name dancetrack000x_mask.avi

For pose demo, run

cd CenterNet/src
python3 demo.py multi_pose --demo  ../../dancetrack/val/dancetrack000x/img1 --load_model ../models/dancetrack_coco_pose.pth --debug 4 --tracking 
cd ../..
python3 tools/img2video.py --img_file CenterNet/exp/multi_pose/default/debug --video_name dancetrack000x_pose.avi

For depth demo, run

cd CenterNet/src
python3 demo.py ddd --demo  ../../dancetrack/val/dancetrack000x/img1 --load_model ../models/dancetrack_kitti_ddd.pth --debug 4 --tracking --test_focal_length 640 --world_size 16 --out_size 128
cd ../..
python3 tools/img2video.py --img_file CenterNet/exp/ddd/default/debug --video_name dancetrack000x_ddd.avi

Agreement

  • The dataset of DanceTrack is available for non-commercial research purposes only.
  • All videos and images of DanceTrack are obtained from the Internet which are not property of HKU, CMU or ByteDance. These three organizations are not responsible for the content nor the meaning of these videos and images.
  • The code of DanceTrack is released under the MIT License.

Acknowledgement

The evaluation metrics and code are from MOT Challenge and TrackEval. The inference code is from ByteTrack. The joint-training code is modified from CenterTrack and CenterNet, where the instance segmentation code is from CenterNet-CondInst. Thanks for their wonderful and pioneering works !

Citation

If you use DanceTrack in your research or wish to refer to the baseline results published here, please use the following BibTeX entry:

@article{peize2021dance,
  title   =  {DanceTrack: Multi-Object Tracking in Uniform Appearance and Diverse Motion},
  author  =  {Peize Sun and Jinkun Cao and Yi Jiang and Zehuan Yuan and Song Bai and Kris Kitani and Ping Luo},
  journal =  {arXiv preprint arXiv:2111.14690},
  year    =  {2021}
}
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder

anime upscaler My usage of Real-ESRGAN to upscale anime, I hope to use this on a proper GPU cuz doing this on CPU is completely shit 😂 , I even tried

Shangar Muhunthan 29 Jan 07, 2023
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023