Progressive Image Deraining Networks: A Better and Simpler Baseline

Related tags

Deep LearningPReNet
Overview

Progressive Image Deraining Networks: A Better and Simpler Baseline

[arxiv] [pdf] [supp]

Introduction

This paper provides a better and simpler baseline deraining network by discussing network architecture, input and output, and loss functions. Specifically, by repeatedly unfolding a shallow ResNet, progressive ResNet (PRN) is proposed to take advantage of recursive computation. A recurrent layer is further introduced to exploit the dependencies of deep features across stages, forming our progressive recurrent network (PReNet). Furthermore, intra-stage recursive computation of ResNet can be adopted in PRN and PReNet to notably reduce network parameters with graceful degradation in deraining performance (PRN_r and PReNet_r). For network input and output, we take both stage-wise result and original rainy image as input to each ResNet and finally output the prediction of residual image. As for loss functions, single MSE or negative SSIM losses are sufficient to train PRN and PReNet. Experiments show that PRN and PReNet perform favorably on both synthetic and real rainy images. Considering its simplicity, efficiency and effectiveness, our models are expected to serve as a suitable baseline in future deraining research.

Prerequisites

  • Python 3.6, PyTorch >= 0.4.0
  • Requirements: opencv-python, tensorboardX
  • Platforms: Ubuntu 16.04, cuda-8.0 & cuDNN v-5.1 (higher versions also work well)
  • MATLAB for computing evaluation metrics

Datasets

PRN and PReNet are evaluated on four datasets*: Rain100H [1], Rain100L [1], Rain12 [2] and Rain1400 [3]. Please download the testing datasets from BaiduYun or OneDrive, and place the unzipped folders into ./datasets/test/.

To train the models, please download training datasets: RainTrainH [1], RainTrainL [1] and Rain12600 [3] from BaiduYun or OneDrive, and place the unzipped folders into ./datasets/train/.

*We note that:

(i) The datasets in the website of [1] seem to be modified. But the models and results in recent papers are all based on the previous version, and thus we upload the original training and testing datasets to BaiduYun and OneDrive.

(ii) For RainTrainH, we strictly exclude 546 rainy images that have the same background contents with testing images. All our models are trained on remaining 1,254 training samples.

Getting Started

1) Testing

We have placed our pre-trained models into ./logs/.

Run shell scripts to test the models:

bash test_Rain100H.sh   # test models on Rain100H
bash test_Rain100L.sh   # test models on Rain100L
bash test_Rain12.sh     # test models on Rain12
bash test_Rain1400.sh   # test models on Rain1400 
bash test_Ablation.sh   # test models in Ablation Study
bash test_real.sh       # test PReNet on real rainy images

All the results in the paper are also available at BaiduYun. You can place the downloaded results into ./results/, and directly compute all the evaluation metrics in this paper.

2) Evaluation metrics

We also provide the MATLAB scripts to compute the average PSNR and SSIM values reported in the paper.

 cd ./statistic
 run statistic_Rain100H.m
 run statistic_Rain100L.m
 run statistic_Rain12.m
 run statistic_Rain1400.m
 run statistic_Ablation.m  # compute the metrics in Ablation Study

Average PSNR/SSIM values on four datasets:

Dataset PRN PReNet PRN_r PReNet_r JORDER[1] RESCAN[4]
Rain100H 28.07/0.884 29.46/0.899 27.43/0.874 28.98/0.892 26.54/0.835 28.88/0.866
Rain100L 36.99/0.977 37.48/0.979 36.11/0.973 37.10/0.977 36.61/0.974 ---
Rain12 36.62/0.952 36.66/0.961 36.16/0.961 36.69/0.962 33.92/0.953 ---
Rain1400 31.69/0.941 32.60/0.946 31.31/0.937 32.44/0.944 --- ---

*We note that:

(i) The metrics by JORDER[1] are computed directly based on the deraining images provided by the authors.

(ii) RESCAN[4] is re-trained with their default settings: (1) RESCAN for Rain100H is trained on the full 1800 rainy images, while our models are all trained on the strict 1254 rainy images. (2) The re-trained model of RESCAN is available at here.

(iii) The deraining results by JORDER and RESCAN can be downloaded from here, and their metrics in the above table can be computed by the Matlab scripts.

3) Training

Run shell scripts to train the models:

bash train_PReNet.sh      
bash train_PRN.sh   
bash train_PReNet_r.sh    
bash train_PRN_r.sh  

You can use tensorboard --logdir ./logs/your_model_path to check the training procedures.

Model Configuration

The following tables provide the configurations of options.

Training Mode Configurations

Option Default Description
batchSize 18 Training batch size
recurrent_iter 6 Number of recursive stages
epochs 100 Number of training epochs
milestone [30,50,80] When to decay learning rate
lr 1e-3 Initial learning rate
save_freq 1 save intermediate model
use_GPU True use GPU or not
gpu_id 0 GPU id
data_path N/A path to training images
save_path N/A path to save models and status

Testing Mode Configurations

Option Default Description
use_GPU True use GPU or not
gpu_id 0 GPU id
recurrent_iter 6 Number of recursive stages
logdir N/A path to trained model
data_path N/A path to testing images
save_path N/A path to save results

References

[1] Yang W, Tan RT, Feng J, Liu J, Guo Z, Yan S. Deep joint rain detection and removal from a single image. In IEEE CVPR 2017.

[2] Li Y, Tan RT, Guo X, Lu J, Brown MS. Rain streak removal using layer priors. In IEEE CVPR 2016.

[3] Fu X, Huang J, Zeng D, Huang Y, Ding X, Paisley J. Removing rain from single images via a deep detail network. In IEEE CVPR 2017.

[4] Li X, Wu J, Lin Z, Liu H, Zha H. Recurrent squeeze-and-excitation context aggregation net for single image deraining.In ECCV 2018.

Citation

 @inproceedings{ren2019progressive,
   title={Progressive Image Deraining Networks: A Better and Simpler Baseline},
   author={Ren, Dongwei and Zuo, Wangmeng and Hu, Qinghua and Zhu, Pengfei and Meng, Deyu},
   booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
   year={2019},
 }
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

QiulinW 122 Dec 23, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
Official repository for Hierarchical Opacity Propagation for Image Matting

HOP-Matting Official repository for Hierarchical Opacity Propagation for Image Matting 🚧 🚧 🚧 Under Construction 🚧 🚧 🚧 🚧 🚧 🚧   Coming Soon   

Li Yaoyi 54 Dec 30, 2021
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
Data and extra materials for the food safety publications classifier

Data and extra materials for the food safety publications classifier The subdirectories contain detailed descriptions of their contents in the README.

1 Jan 20, 2022
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
A developer interface for creating Chat AIs for the Chai app.

ChaiPy A developer interface for creating Chat AIs for the Chai app. Usage Local development A quick start guide is available here, with a minimal exa

Chai 28 Dec 28, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
Churn-Prediction-Project - In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class.

Churn-Prediction-Project In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class. Project in

1 Jan 03, 2022
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
Square Root Bundle Adjustment for Large-Scale Reconstruction

RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on

Nikolaus Demmel 205 Dec 20, 2022