Fuzzing the Kernel Using Unicornafl and AFL++

Overview

Unicorefuzz

Build Status code-style: black

Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19.

Is it any good?

yes.

AFL Screenshot

Unicorefuzz Setup

  • Install python2 & python3 (ucf uses python3, however qemu/unicorn needs python2 to build)
  • Run ./setup.sh, preferrably inside a Virtualenv (else python deps will be installed using --user). During install, afl++ and uDdbg as well as python deps will be pulled and installed.
  • Enjoy ucf

Upgrading

When upgrading from an early version of ucf:

  • Unicorefuzz will notify you of config changes and new options automatically.
  • Alternatively, run ucf spec to output a commented config.py spec-like element.
  • probe_wrapper.py is now ucf attach.
  • harness.py is now named ucf emu.
  • The song remains the same.

Debug Kernel Setup (Skip this if you know how this works)

  • Create a qemu-img and install your preferred OS on there through qemu
  • An easy way to get a working userspace up and running in QEMU is to follow the steps described by syzkaller, namely create-image.sh
  • For kernel customization you might want to clone your preferred kernel version and compile it on the host. This way you can also compile your own kernel modules (e.g. example_module).
  • In order to find out the address of a loaded module in the guest OS you can use cat /proc/modules to find out the base address of the module location. Use this as the offset for the function where you want to break. If you specify MODULE and BREAK_OFFSET in the config.py, it should use ./get_mod_addr.sh to start it automated.
  • You can compile the kernel with debug info. When you have compiled the linux kernel you can start gdb from the kernel folder with gdb vmlinux. After having loaded other modules you can use the lx-symbols command in gdb to load the symbols for the other modules (make sure the .ko files of the modules are in your kernel folder). This way you can just use something like break function_to_break to set breakpoints for the required functions.
  • In order to compile a custom kernel for Arch, download the current Arch kernel and set the .config to the Arch default. Then set DEBUG_KERNEL=y, DEBUG_INFO=y, GDB_SCRIPTS=y (for convenience), KASAN=y, KASAN_EXTRA=y. For convenience, we added a working example_config that can be place to the linux dir.
  • To only get necessary kernel modules boot the current system and execute lsmod > mylsmod and copy the mylsmod file to your host system into the linux kernel folder that you downloaded. Then you can use make LSMOD=mylsmod localmodconfig to only make the kernel modules that are actually needed by the guest system. Then you can compile the kernel like normal with make. Then mount the guest file system to /mnt and use make modules_install INSTALL_MOD_PATH=/mnt. At last you have to create a new initramfs, which apparently has to be done on the guest system. Here use mkinitcpio -k <folder in /lib/modules/...> -g <where to put initramfs>. Then you just need to copy that back to the host and let qemu know where your kernel and the initramfs are located.
  • Setting breakpoints anywhere else is possible. For this, set BREAKADDR in the config.py instead.
  • For fancy debugging, ucf uses uDdbg
  • Before fuzzing, run sudo ./setaflops.sh to initialize your system for fuzzing.

Run

  • ensure a target gdbserver is reachable, for example via ./startvm.sh
  • adapt config.py:
    • provide the target's gdbserver network address in the config to the probe wrapper
    • provide the target's target function to the probe wrapper and harness
    • make the harness put AFL's input to the desired memory location by adopting the place_input func config.py
    • add all EXITs
  • start ucf attach, it will (try to) connect to gdb.
  • make the target execute the target function (by using it inside the vm)
  • after the breakpoint was hit, run ucf fuzz. Make sure afl++ is in the PATH. (Use ./resumeafl.sh to resume using the same input folder)

Putting afl's input to the correct location must be coded invididually for most targets. However with modern binary analysis frameworks like IDA or Ghidra it's possible to find the desired location's address.

The following place_input method places at the data section of sk_buff in key_extract:

    # read input into param xyz here:
    rdx = uc.reg_read(UC_X86_REG_RDX)
    utils.map_page(uc, rdx) # ensure sk_buf is mapped
    bufferPtr = struct.unpack("<Q",uc.mem_read(rdx + 0xd8, 8))[0]
    utils.map_page(uc, bufferPtr) # ensure the buffer is mapped
    uc.mem_write(rdx, input) # insert afl input
    uc.mem_write(rdx + 0xc4, b"\xdc\x05") # fix tail

QEMUing the Kernel

A few general pointers. When using ./startvm.sh, the VM can be debugged via gdb. Use

$gdb
>file ./linux/vmlinux
>target remote :1234

This dynamic method makes it rather easy to find out breakpoints and that can then be fed to config.py. On top, startvm.sh will forward port 22 (ssh) to 8022 - you can use it to ssh into the VM. This makes it easier to interact with it.

Debugging

You can step through the code, starting at the breakpoint, with any given input. The fancy debugging makes use of uDdbg. To do so, run ucf emu -d $inputfile. Possible inputs to the harness (the thing wrapping afl-unicorn) that help debugging:

-d flag loads the target inside the unicorn debugger (uDdbg) -t flag enables the afl-unicorn tracer. It prints every emulated instruction, as well as displays memory accesses.

Gotchas

A few things to consider.

FS_BASE and GS_BASE

Unicorn did not offer a way to directly set model specific registers directly. The forked unicornafl version of AFL++ finally supports it. Most ugly code of earlier versions was scrapped.

Improve Fuzzing Speed

Right now, the Unicorefuzz ucf attach harness might need to be manually restarted after an amount of pages has been allocated. Allocated pages should propagate back to the forkserver parent automatically but might still get reloaded from disk for each iteration.

IO/Printthings

It's generally a good idea to nop out kprintf or kernel printing functionality if possible, when the program is loaded into the emulator.

Troubleshooting

If you got trouble running unicorefuzz, follow these rulse, worst case feel free to reach out to us, for example to @domenuk on twitter. For some notes on debugging and developing ucf and afl-unicorn further, read DEVELOPMENT.md

Just won't start

Run the harness without afl (ucf emu -t ./sometestcase). Make sure you are not in a virtualenv or in the correct one. If this works but it still crashes in AFL, set AFL_DEBUG_CHILD_OUTPUT=1 to see some harness output while fuzzing.

All testcases time out

Make sure ucf attach is running, in the same folder, and breakpoint has been triggered.

Owner
Security in Telecommunications
The Computer Security Group at Berlin University of Technology
Security in Telecommunications
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
[ICSE2020] MemLock: Memory Usage Guided Fuzzing

MemLock: Memory Usage Guided Fuzzing This repository provides the tool and the evaluation subjects for the paper "MemLock: Memory Usage Guided Fuzzing

Cheng Wen 54 Jan 07, 2023
subpixel: A subpixel convnet for super resolution with Tensorflow

subpixel: A subpixel convolutional neural network implementation with Tensorflow Left: input images / Right: output images with 4x super-resolution af

Atrium LTS 2.1k Dec 23, 2022
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n

Ashutosh Hathidara 60 Dec 10, 2022
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Daxuan 39 Dec 26, 2022
Elevation Mapping on GPU.

Elevation Mapping cupy Overview This is a ros package of elevation mapping on GPU. Code are written in python and uses cupy for GPU calculation. * pla

Robotic Systems Lab - Legged Robotics at ETH Zürich 183 Dec 19, 2022
A library to inspect itermediate layers of PyTorch models.

A library to inspect itermediate layers of PyTorch models. Why? It's often the case that we want to inspect intermediate layers of a model without mod

archinet.ai 380 Dec 28, 2022
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Gen Li 91 Dec 23, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023