DABO: Data Augmentation with Bilevel Optimization

Overview

License

figure figure

DABO: Data Augmentation with Bilevel Optimization [Paper]

The goal is to automatically learn an efficient data augmentation regime for image classification.

Accepted at WACV2021

Table of Contents

Overview

What's new: This method provides a way to automatically learn data augmentation in order to improve the image classification performance. It does not require us to hard code augmentation techniques, which might need domain knowledge or an expensive hyper-parameter search on the validation set.

Key insight: Our method efficiently trains a network that performs data augmentation. This network learns data augmentation by usiing the gradient that flows from computing the classifier's validation loss using an online version of bilevel optimization. We also perform truncated back-propagation in order to significantly reduce the computational cost of bilevel optimization.

How it works: Our method jointly trains a classifier and an augmentation network through the following steps,

figure

  • For each mini batch,a forward pass is made to calculate the training loss.
  • Based on the training loss and the gradient of the training loss, an optimization step is made for the classifier in the inner loop.
  • A forward pass is then made on the classifier with the new weight to calculate the validation loss.
  • The gradient from the validation loss is backpropagated to train the augmentation network.

Results: Our model obtains better results than carefuly hand engineered transformations and GAN-based approaches. Further, the results are competitive against methods that use a policy search on CIFAR10, CIFAR100, BACH, Tiny-Imagenet and Imagenet datasets.

Why it matters: Proper data augmentation can significantly improve generalization performance. Unfortunately, deriving these augmentations require domain expertise or extensive hyper-parameter search. Thus, having an automatic and quick way of identifying efficient data augmentation has a big impact in obtaining better models.

Where to go from here: Performance can be improved by extending the set of learned transformations to non-differentiable transformations. The estimation of the validation loss could also be improved by exploring more the influence of the number of iteration in the inner loop. Finally, the method can be extended to other tasks like object detection of image segmentation.

Experiments

1. Install requirements: Run this command to install the Haven library which helps in managing experiments.

pip install -r requirements.txt

2.1 CIFAR10 experiments: The followng command runs the training and validation loop for CIFAR.

python trainval.py -e cifar -sb ../results -d ../data -r 1

where -e defines the experiment group, -sb is the result directory, and -d is the dataset directory.

2.2 BACH experiments: The followng command runs the training and validation loop on BACH dataset.

python trainval.py -e bach -sb ../results -d ../data -r 1

where -e defines the experiment group, -sb is the result directory, and -d is the dataset directory.

3. Results: Display the results by following the steps below,

figure

Launch Jupyter by running the following on terminal,

jupyter nbextension enable --py widgetsnbextension
jupyter notebook

Then, run the following script on a Jupyter cell,

from haven import haven_jupyter as hj
from haven import haven_results as hr
from haven import haven_utils as hu

# path to where the experiments got saved
savedir_base = ''
exp_list = None

# exp_list = hu.load_py().EXP_GROUPS[]
# get experiments
rm = hr.ResultManager(exp_list=exp_list, 
                      savedir_base=savedir_base, 
                      verbose=0
                     )
y_metrics = ['test_acc']
bar_agg = 'max'
mode = 'bar'
legend_list = ['model.netA.name']
title_list = 'dataset.name'
legend_format = 'Augmentation Netwok: {}'
filterby_list = {'dataset':{'name':'cifar10'}, 'model':{'netC':{'name':'resnet18_meta_2'}}}

# launch dashboard
hj.get_dashboard(rm, vars(), wide_display=True)

Citation

@article{mounsaveng2020learning,
  title={Learning Data Augmentation with Online Bilevel Optimization for Image Classification},
  author={Mounsaveng, Saypraseuth and Laradji, Issam and Ayed, Ismail Ben and Vazquez, David and Pedersoli, Marco},
  journal={arXiv preprint arXiv:2006.14699},
  year={2020}
}
Owner
ElementAI
ElementAI
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
Auditing Black-Box Prediction Models for Data Minimization Compliance

Data-Minimization-Auditor An auditing tool for model-instability based data minimization that is introduced in "Auditing Black-Box Prediction Models f

Bashir Rastegarpanah 2 Mar 24, 2022
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"

EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by

VITA 13 May 11, 2022
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL, and utterance id

TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL

3 Dec 26, 2022
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022