Face Detection & Age Gender & Expression & Recognition

Overview

FaceLib:

  • use for Detection, Facial Expression, Age & Gender Estimation and Recognition with PyTorch
  • this repository works with CPU and GPU(Cuda)

Installation

  • Clone and install with this command:
    • with pip and automatic installs everything all you need

      • pip install git+https://github.com/sajjjadayobi/FaceLib.git
    • or with cloning the repo and install required packages

      • git clone https://github.com/sajjjadayobi/FaceLib.git
  • you can see the required packages in requirements.txt

How to use:

  • the simplest way is at example_notebook.ipynb
  • for low-level usage check out the following sections
  • if you have an NVIDIA GPU don't change the device param if not use cpu

1. Face Detection: RetinaFace

  • you can use these backbone networks: Resnet50, mobilenet
    • default weights and model is mobilenet and it will be automatically download
  • for more details, you can see the documentation
  • The following example illustrates the ease of use of this package:
 from facelib import FaceDetector
 detector = FaceDetector()
 boxes, scores, landmarks = detector.detect_faces(image)
  • FaceDetection live on your webcam
   from facelib import WebcamFaceDetector
   detector = WebcamFaceDetector()
   detector.run()

WiderFace Validation Performance on a single scale When using Mobilenet for backbone

Style easy medium hard
Pytorch (same parameter with Mxnet) 88.67% 87.09% 80.99%
Pytorch (original image scale) 90.70% 88.16% 73.82%
Mxnet(original image scale) 89.58% 87.11% 69.12%

2. Face Alignment: Similar Transformation

  • always use detect_align it gives you better performance
  • you can use this module like this:
    • detect_align instead of detect_faces
 from facelib import FaceDetector
 detector = FaceDetector()
 faces, boxes, scores, landmarks = detector.detect_align(image)
  • for more details read detect_image function documentation
  • let's see a few examples
Original Aligned & Resized Original Aligned & Resized
image image image image

3. Age & Gender Estimation:

  • I used UTKFace DataSet for Age & Gender Estimation
    • default weights and model is ShufflenetFull and it will be automatically download
  • you can use this module like this:
   from facelib import FaceDetector, AgeGenderEstimator

   face_detector = FaceDetector()
   age_gender_detector = AgeGenderEstimator()

   faces, boxes, scores, landmarks = face_detector.detect_align(image)
   genders, ages = age_gender_detector.detect(faces)
   print(genders, ages)
  • AgeGenderEstimation live on your webcam
   from facelib import WebcamAgeGenderEstimator
   estimator = WebcamAgeGenderEstimator()
   estimator.run()

4. Facial Expression Recognition:

  • Facial Expression Recognition using Residual Masking Network
    • default weights and model is densnet121 and it will be automatically download
  • face size must be (224, 224), you can fix it in FaceDetector init function with face_size=(224, 224)
  from facelib import FaceDetector, EmotionDetector
 
  face_detector = FaceDetector(face_size=(224, 224))
  emotion_detector = EmotionDetector()

  faces, boxes, scores, landmarks = face_detector.detect_align(image)
  list_of_emotions, probab = emotion_detector.detect_emotion(faces)
  print(list_of_emotions)
  • EmotionDetector live on your webcam
   from facelib import WebcamEmotionDetector
   detector = WebcamEmotionDetector()
   detector.run()
  • on my Webcam 🙂

Alt Text

5. Face Recognition: InsightFace

  • This module is a reimplementation of Arcface(paper), or Insightface(Github)

Pretrained Models & Performance

  • IR-SE50
LFW(%) CFP-FF(%) CFP-FP(%) AgeDB-30(%) calfw(%) cplfw(%) vgg2_fp(%)
0.9952 0.9962 0.9504 0.9622 0.9557 0.9107 0.9386
  • Mobilefacenet
LFW(%) CFP-FF(%) CFP-FP(%) AgeDB-30(%) calfw(%) cplfw(%) vgg2_fp(%)
0.9918 0.9891 0.8986 0.9347 0.9402 0.866 0.9100

Prepare the Facebank (For testing over camera, video or image)

  • the faces images you want to detect it save them in this folder:

    Insightface/models/data/facebank/
              ---> person_1/
                  ---> img_1.jpg
                  ---> img_2.jpg
              ---> person_2/
                  ---> img_1.jpg
                  ---> img_2.jpg
    
  • you can save a new preson in facebank with 3 ways:

    • use add_from_webcam: it takes 4 images and saves them on facebank
       from facelib import add_from_webcam
       add_from_webcam(person_name='sajjad')
    • use add_from_folder: it takes a path with some images from just a person
       from facelib import add_from_folder
       add_from_folder(folder_path='./', person_name='sajjad')
    • or add faces manually (just face of a person not image of a person)
      • I don't suggest this

Using

  • default weights and model is mobilenet and it will be automatically download
    import cv2
    from facelib import FaceRecognizer, FaceDetector
    from facelib import update_facebank, load_facebank, special_draw, get_config
 
    conf = get_config()
    detector = FaceDetector()
    face_rec = FaceRecognizer(conf)
    face_rec.model.eval()
    
    # set True when you add someone new 
    update_facebank_for_add_new_person = False
    if update_facebank_for_add_new_person:
        targets, names = update_facebank(conf, face_rec.model, detector)
    else:
        targets, names = load_facebank(conf)

    image = cv2.imread(your_path)
    faces, boxes, scores, landmarks = detector.detect_align(image)
    results, score = face_rec.infer(conf, faces, targets)
    print(names[results.cpu()])
    for idx, bbox in enumerate(boxes):
        special_draw(image, bbox, landmarks[idx], names[results[idx]+1], score[idx])
  • Face Recognition live on your webcam
   from facelib import WebcamVerify
   verifier = WebcamVerify(update=True)
   verifier.run()
  • example of run this code:

image

Reference:

Owner
Sajjad Ayobi
Data Science Lover, a Little Geek
Sajjad Ayobi
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Auto White-Balance Correction for Mixed-Illuminant Scenes

Auto White-Balance Correction for Mixed-Illuminant Scenes Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown York University Video Reference code

Mahmoud Afifi 47 Nov 26, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
Development Kit for the SoccerNet Challenge

SoccerNetv2-DevKit Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started w

Silvio Giancola 117 Dec 30, 2022
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Matias Godoy 148 Dec 29, 2022
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
ChatBot-Pytorch - A GPT-2 ChatBot implemented using Pytorch and Huggingface-transformers

ChatBot-Pytorch A GPT-2 ChatBot implemented using Pytorch and Huggingface-transf

ParZival 42 Dec 09, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

OÄŸuzhan Ercan 6 Dec 05, 2022
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022