Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

Overview

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes

License CC BY-NC

This repository contains the official PyTorch implementation of the following paper:

Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes
Hyeongseok Son, Junyong Lee, Jonghyeop Lee, Sunghyun Cho, Seungyong Lee, TOG 2021 (presented at SIGGRAPH 2021)

About the Research

Click here

Overall Framework

Our video deblurring framework consists of three modules: a blur-invariant motion estimation network (BIMNet), a pixel volume generator, and a pixel volume-based deblurring network (PVDNet). We first train BIMNet; after it has converged, we combine the two networks with the pixel volume generator. We then fix the parameters of BIMNet and train PVDNet by training the entire network.

Blur-Invariant Motion Estimation Network (BIMNet)

To estimate motion between frames accurately, we adopt LiteFlowNet and train it with a blur-invariant loss so that the trained network can estimate blur-invariant optical flow between frames. We train BIMNet with a blur-invariant loss , which is defined as (refer Eq. 1 in the main paper):

The figure shows a qualitative comparison of different optical flow methods. The results of the other methods contain severely distorted structures due to errors in their optical flow maps. In contrast, the results of BIMNets show much less distortions.

Pixel Volume for Motion Compensation

We propose a novel pixel volume that provides multiple candidates for matching pixels between images. Moreover, a pixel volume provides an additional cue for motion compensation based on the majority.

Our pixel volume approach leads to the performance improvement of video deblurring by utilizing the multiple candidates in a pixel volume in two aspects: 1) in most cases, the majority cue for the correct match would help as the statistics (Sec. 4.4 in the main paper) shows, and 2) in other cases, PVDNet would exploit multiple candidates to estimate the correct match referring to nearby pixels with majority cues.

Getting Started

Prerequisites

Tested environment

Ubuntu18.04 Python 3.8.8 PyTorch 1.8.0 CUDA 10.2

  1. Environment setup

    $ git clone https://github.com/codeslake/PVDNet.git
    $ cd PVDNet
    
    $ conda create -y --name PVDNet python=3.8 && conda activate PVDNet
    # for CUDA10.2
    $ sh install_CUDA10.2.sh
    # for CUDA11.1
    $ sh install_CUDA11.1.sh
  2. Datasets

    • Download and unzip Su et al.'s dataset and Nah et al.'s dataset under [DATASET_ROOT]:

      ├── [DATASET_ROOT]
      │   ├── train_DVD
      │   ├── test_DVD
      │   ├── train_nah
      │   ├── test_nah
      

      Note:

      • [DATASET_ROOT] is currently set to ./datasets/video_deblur. It can be specified by modifying config.data_offset in ./configs/config.py.
  3. Pre-trained models

    • Download and unzip pretrained weights under ./ckpt/:

      ├── ./ckpt
      │   ├── BIMNet.pytorch
      │   ├── PVDNet_DVD.pytorch
      │   ├── PVDNet_nah.pytorch
      │   ├── PVDNet_large_nah.pytorch
      

Testing models of TOG2021

For PSNRs and SSIMs reported in the paper, we use the approach of Koehler et al. following Su et al., that first aligns two images using global translation to represent the ambiguity in the pixel location caused by blur.
Refer here for the evaluation code.

## Table 4 in the main paper (Evaluation on Su etal's dataset)
# Our final model 
CUDA_VISIBLE_DEVICES=0 python run.py --mode PVDNet_DVD --config config_PVDNet --data DVD --ckpt_abs_name ckpt/PVDNet_DVD.pytorch

## Table 5 in the main paper (Evaluation on Nah etal's dataset)
# Our final model 
CUDA_VISIBLE_DEVICES=0 python run.py --mode PVDNet_nah --config config_PVDNet --data nah --ckpt_abs_name ckpt/PVDNet_nah.pytorch

# Larger model
CUDA_VISIBLE_DEVICES=0 python run.py --mode PVDNet_large_nah --config config_PVDNet_large --data nah --ckpt_abs_name ckpt/PVDNet_large_nah.pytorch

Note:

  • Testing results will be saved in [LOG_ROOT]/PVDNet_TOG2021/[mode]/result/quanti_quali/[mode]_[epoch]/[data]/.
  • [LOG_ROOT] is set to ./logs/ by default. Refer here for more details about the logging.
  • options
    • --data: The name of a dataset to evaluate: DVD | nah | random. Default: DVD
      • The data structure can be modified in the function set_eval_path(..) in ./configs/config.py.
      • random is for testing models with any video frames, which should be placed as [DATASET_ROOT]/random/[video_name]/*.[jpg|png].

Wiki

Citation

If you find this code useful, please consider citing:

@artical{Son_2021_TOG,
    author = {Son, Hyeongseok and Lee, Junyong and Lee, Jonghyeop and Cho, Sunghyun and Lee, Seungyong},
    title = {Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes},
    journal = {ACM Transactions on Graphics},
    year = {2021}
}

Contact

Open an issue for any inquiries. You may also have contact with [email protected] or [email protected]

Resources

All material related to our paper is available by following links:

Link
The main paper
arXiv
Supplementary Files
Checkpoint Files
Su et al [2017]'s dataset (reference)
Nah et al. [2017]'s dataset (reference)

License

This software is being made available under the terms in the LICENSE file.

Any exemptions to these terms require a license from the Pohang University of Science and Technology.

About Coupe Project

Project ‘COUPE’ aims to develop software that evaluates and improves the quality of images and videos based on big visual data. To achieve the goal, we extract sharpness, color, composition features from images and develop technologies for restoring and improving by using them. In addition, personalization technology through user reference analysis is under study.

Please check out other Coupe repositories in our Posgraph github organization.

Useful Links

Owner
Junyong Lee
Ph.D candidate at POSTECH
Junyong Lee
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales

IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales. In this case, we ended up using XGBoost because it was the o

1 Jan 04, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.

Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc

Matt Cooper 704 Nov 26, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
Representing Long-Range Context for Graph Neural Networks with Global Attention

Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N

UC Berkeley RISE 67 Dec 30, 2022
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023