Open Source Light Field Toolbox for Super-Resolution

Overview

BasicLFSR

BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection of papers on LF image SR and a benchmark to comprehensively evaluate the performance of existing methods. We also provided simple pipelines to train/valid/test state-of-the-art methods to get started quickly, and you can transform your methods into the benchmark.

Note: This repository will be updated on a regular basis, and the pretrained models of existing methods will be open-sourced one after another. So stay tuned!

Methods

Methods Paper Repository
LFSSR Light Field Spatial Super-Resolution Using Deep Efficient Spatial-Angular Separable Convolution. TIP2018 spatialsr/
DeepLightFieldSSR
resLF Residual Networks for Light Field Image Super-Resolution. CVPR2019 shuozh/resLF
HDDRNet High-Dimensional Dense Residual Convolutional Neural Network for Light Field Reconstruction. TPAMI2019 monaen/
LightFieldReconstruction
LF-InterNet Spatial-Angular Interaction for Light Field Image Super-Resolution. ECCV2019 YingqianWang/
LF-InterNet
LFSSR-ATO Light field spatial super-resolution via deep combinatorial geometry embedding and structural consistency regularization. CVPR2020 jingjin25/
LFSSR-ATO
LF-DFnet Light field image super-resolution using deformable convolution. TIP2020 YingqianWang/
LF-DFnet
MEG-Net End-to-End Light Field Spatial Super-Resolution Network using Multiple Epipolar Geometry. TIP2021 shuozh/MEG-Net

Datasets

We used the EPFL, HCInew, HCIold, INRIA and STFgantry datasets for both training and test. Please first download our datasets via Baidu Drive (key:7nzy) or OneDrive, and place the 5 datasets to the folder ./datasets/.

  • After downloading, you should find following structure:

    ├──./datasets/
    │    ├── EPFL
    │    │    ├── training
    │    │    │    ├── Bench_in_Paris.mat
    │    │    │    ├── Billboards.mat
    │    │    │    ├── ...
    │    │    ├── test
    │    │    │    ├── Bikes.mat
    │    │    │    ├── Books__Decoded.mat
    │    │    │    ├── ...
    │    ├── HCI_new
    │    ├── ...
    
  • Run Generate_Data_for_Training.m to generate training data. The generated data will be saved in ./data_for_train/ (SR_5x5_2x, SR_5x5_4x).

  • Run Generate_Data_for_Test.m to generate test data. The generated data will be saved in ./data_for_test/ (SR_5x5_2x, SR_5x5_4x).

Benchmark

We benchmark several methods on above datasets, and PSNR and SSIM metrics are used for quantitative evaluation.

PSNR and SSIM values achieved by different methods for 2xSR:

Method Scale #Params. EPFL HCInew HCIold INRIA STFgantry Average
Bilinear x2 -- 28.479949/0.918006 30.717944/0.919248 36.243278/0.970928 30.133901/0.945545 29.577468/0.931030 31.030508/0.936951
Bicubic x2 -- 29.739509/0.937581 31.887011/0.935637 37.685776/0.978536 31.331483/0.957731 31.062631/0.949769 32.341282/0.951851
VDSR x2
EDSR x2 33.088922/0.962924 34.828374/0.959156 41.013989/0.987400 34.984982/0.976397 36.295865/0.981809
RCSN x2
resLF x2
LFSSR x2 33.670594/0.974351 36.801555/0.974910 43.811050/0.993773 35.279443/0.983202 37.943969/0.989818
LF-ATO x2 34.271635/0.975711 37.243620/0.976684 44.205264/0.994202 36.169943/0.984241 39.636445/0.992862
LF-InterNet x2
LF-DFnet x2
MEG-Net x2
LFT x2

PSNR and SSIM values achieved by different methods for 4xSR:

Method Scale #Params. EPFL HCInew HCIold INRIA STFgantry Average
Bilinear x4 -- 24.567490/0.815793 27.084949/0.839677 31.688225/0.925630 26.226265/0.875682 25.203262/0.826105 26.954038/0.856577
Bicubic x4 -- 25.264206/0.832389 27.714905/0.851661 32.576315/0.934428 26.951718/0.886740 26.087451/0.845230 27.718919/0.870090
VDSR x4
EDSR x4
RCSN x4
resLF x4
LFSSR x4
LF-ATO x4
LF-InterNet x4
LF-DFnet x4
MEG-Net x4
LFT x4

Train

  • Run train.py to perform network training. Example for training [model_name] on 5x5 angular resolution for 2x/4x SR:
    $ python train.py --model_name [model_name] --angRes 5 --scale_factor 2 --batch_size 8
    $ python train.py --model_name [model_name] --angRes 5 --scale_factor 4 --batch_size 4
    
  • Checkpoints and Logs will be saved to ./log/, and the ./log/ has following structure:
    ├──./log/
    │    ├── SR_5x5_2x
    │    │    ├── [dataset_name]
    │    │         ├── [model_name]
    │    │         │    ├── [model_name]_log.txt
    │    │         │    ├── checkpoints
    │    │         │    │    ├── [model_name]_5x5_2x_epoch_01_model.pth
    │    │         │    │    ├── [model_name]_5x5_2x_epoch_02_model.pth
    │    │         │    │    ├── ...
    │    │         │    ├── results
    │    │         │    │    ├── VAL_epoch_01
    │    │         │    │    ├── VAL_epoch_02
    │    │         │    │    ├── ...
    │    │         ├── [other_model_name]
    │    │         ├── ...
    │    ├── SR_5x5_4x
    

Test

  • Run test.py to perform network inference. Example for test [model_name] on 5x5 angular resolution for 2x/4xSR:

    $ python test.py --model_name [model_name] --angRes 5 --scale_factor 2  
    $ python test.py --model_name [model_name] --angRes 5 --scale_factor 4 
    
  • The PSNR and SSIM values of each dataset will be saved to ./log/, and the ./log/ is following structure:

    ├──./log/
    │    ├── SR_5x5_2x
    │    │    ├── [dataset_name]
    │    │        ├── [model_name]
    │    │        │    ├── [model_name]_log.txt
    │    │        │    ├── checkpoints
    │    │        │    │   ├── ...
    │    │        │    ├── results
    │    │        │    │    ├── Test
    │    │        │    │    │    ├── evaluation.xls
    │    │        │    │    │    ├── [dataset_1_name]
    │    │        │    │    │    │    ├── [scene_1_name]
    │    │        │    │    │    │    │    ├── [scene_1_name]_CenterView.bmp
    │    │        │    │    │    │    │    ├── [scene_1_name]_SAI.bmp
    │    │        │    │    │    │    │    ├── views
    │    │        │    │    │    │    │    │    ├── [scene_1_name]_0_0.bmp
    │    │        │    │    │    │    │    │    ├── [scene_1_name]_0_1.bmp
    │    │        │    │    │    │    │    │    ├── ...
    │    │        │    │    │    │    │    │    ├── [scene_1_name]_4_4.bmp
    │    │        │    │    │    │    ├── [scene_2_name]
    │    │        │    │    │    │    ├── ...
    │    │        │    │    │    ├── [dataset_2_name]
    │    │        │    │    │    ├── ...
    │    │        │    │    ├── VAL_epoch_01
    │    │        │    │    ├── ...
    │    │        ├── [other_model_name]
    │    │        ├── ...
    │    ├── SR_5x5_4x
    

Recources

We provide some original super-resolved images and useful resources to facilitate researchers to reproduce the above results.

Other Recources

Contact

Any question regarding this work can be addressed to [email protected].

Owner
Squidward
Squidward
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022
A crash course in six episodes for software developers who want to become machine learning practitioners.

Featured code sample tensorflow-planespotting Code from the Google Cloud NEXT 2018 session "Tensorflow, deep learning and modern convnets, without a P

Google Cloud Platform 2.6k Jan 08, 2023
FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19)

FCOS: Fully Convolutional One-Stage Object Detection This project hosts the code for implementing the FCOS algorithm for object detection, as presente

Tian Zhi 3.1k Jan 05, 2023
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

BCMI 53 Nov 15, 2022
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 05, 2023