Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Overview

SweepContractor.jl

A Julia package for the contraction of tensor networks using the sweep-line-based contraction algorithm laid out in the paper General tensor network decoding of 2D Pauli codes. This algorithm is primarily designed for two-dimensional tensor networks but contains graph manipulation tools that allow it to function for generic tensor networks.

Sweep-line anim

Below I have provided some examples of SweepContractor.jl at work. Scripts with working versions of each of these examples are also included in the package. For more detailed documentation consult help pages by using ? in the Julia REPL.

Feel free to contact me with any comments, questions, or suggestions at [email protected]. If you use SweepContractor.jl for research, please cite either arXiv:2101.04125 and/or doi:10.5281/zenodo.5566841.

Example 1: ABCD

Consider the following four tensor networks, taken from the tensor network review Hand-waving and Interpretive Dance:

ABCD1,

where each tensor is defined

ABCD2

First we need to install SweepContract.jl, which we do by running

import Pkg
Pkg.add("SweepContractor")

Now that it's installed we can use the package by running

using SweepContractor

Next we need to define our network. We do this by initialising a LabelledTensorNetwork, which allows us to have a tensor network with elements labelled by an arbitrary type, in our case Char.

LTN = LabelledTensorNetwork{Char}()

Next, we populate this with our four tensors, which are each specified by giving a list of neighbouring tensors, an array consisting of the entries, and a two-dimensional location.

LTN['A'] = Tensor(['D','B'], [i^2-2j for i=0:2, j=0:2], 0, 1)
LTN['B'] = Tensor(['A','D','C'], [-3^i*j+k for i=0:2, j=0:2, k=0:2], 0, 0)
LTN['C'] = Tensor(['B','D'], [j for i=0:2, j=0:2], 1, 0)
LTN['D'] = Tensor(['A','B','C'], [i*j*k for i=0:2, j=0:2, k=0:2], 1, 1)

Finally, we want to contract this network. To do this we need to specify a target bond dimension and a maximum bond-dimension. In our case, we will use 2 and 4.

value = sweep_contract(LTN,2,4)

To avoid underflows or overflows in the case of large networks sweep_contract does not simply return a float, but returns (f::Float64,i::Int64), which represents a valuef*2^i. In this case, it returns (1.0546875, 10). By running ldexp(sweep...) we can see that this corresponds to the exact value of the network of 1080.

Note there are two speedups that can be made to this code. Firstly, sweep_contract copies the input tensor network, so we can use the form sweep_contract! which allows the function to modify the input tensor network, skipping this copy step. Secondly, sweep_contract is designed to function on arbitrary tensor networks, and starts by flattening the network down into two dimensions. If our network is already well-structured, we can run the contraction in fast mode skipping these steps.

value = sweep_contract!(LTN,2,4; fast=true)

Examples 2: 2d grid (open)

Next, we move on to the sort of network this code was primarily designed for, a two-dimensional network. Here consider an square grid network of linear size L, with each index of dimension d. For convenience, we can once again use a LabelledTensorNetwork, with labels in this case corresponding to coordinates in the grid. To construct such a network with Gaussian random entries we can use code such as:

LTN = LabelledTensorNetwork{Tuple{Int,Int}}();
for i1:L, j1:L
    adj=Tuple{Int,Int}[];
    i>1 && push!(adj,(i-1,j))
    j>1 && push!(adj,(i,j-1))
    i<L && push!(adj,(i+1,j))
    j<L && push!(adj,(i,j+1))
    LTN[i,j] = Tensor(adj, randn(d*ones(Int,length(adj))...), i, j)
end

We note that the if statements used have the function of imposing open boundary conditions. Once again we can now contract this by running the sweep contractor (in fast mode), for some choice of bond-dimensions χ and τ:

value = sweep_contract!(LTN,χ,τ; fast=true)

Example 3: 2d grid (periodic)

But what about contracting a 2d grid with periodic boundary conditions? Well, this contains a small number of long-range bonds. Thankfully, however SweepContractor.jl can run on such graphs by first planarising them.

We might start by taking the above code and directly changing the boundary conditions, but this will result in the boundary edges overlapping other edges in the network (e.g. the edge from (1,1) to (2,1) will overlap the edge from (1,1) to (L,1)), which the contractor cannot deal with. As a crude workaround we just randomly shift the position of each tensor by a small amount:

LTN = LabelledTensorNetwork{Tuple{Int,Int}}();
for i1:L, j1:L
    adj=[
        (mod1(i-1,L),mod1(j,L)),
        (mod1(i+1,L),mod1(j,L)),
        (mod1(i,L),mod1(j-1,L)),
        (mod1(i,L),mod1(j+1,L))
    ]
    LTN[i,j] = Tensor(adj, randn(d,d,d,d), i+0.1*rand(), j+0.1*rand())
end

Here the mod1 function is imposing our periodic boundary condition, and rand() is being used to slightly move each tensor. Once again we can now run sweep_contract on this, but cannot use fast-mode as the network is no longer planar:

value = sweep_contract!(LTN,χ,τ)

Example 4: 3d lattice

If we can impose periodic boundary conditions, can we go further away from 2D? How about 3D? We sure can! For this we can just add another dimension to the above construction for a 2d grid:

LTN = LabelledTensorNetwork{Tuple{Int,Int,Int}}();
for i1:L, j1:L, k1:L
    adj=Tuple{Int,Int,Int}[];
    i>1 && push!(adj,(i-1,j,k))
    i<L && push!(adj,(i+1,j,k))
    j>1 && push!(adj,(i,j-1,k))
    j<L && push!(adj,(i,j+1,k))
    k>1 && push!(adj,(i,j,k-1))
    k<L && push!(adj,(i,j,k+1))
    LTN[i,j,k] = Tensor(
        adj,
        randn(d*ones(Int,length(adj))...),
        i+0.01*randn(),
        j+0.01*randn()
    )
end

value = sweep_contract!(LTN,χ,τ)

Example 5: Complete network

So how far can we go away from two-dimensional? The further we stray away from two-dimensional the more inefficient the contraction will be, but for small examples arbitrary connectivity is permissible. The extreme example is a completely connected network of n tensors:

TN=TensorNetwork(undef,n);
for i=1:n
    TN[i]=Tensor(
        setdiff(1:n,i),
        randn(d*ones(Int,n-1)...),
        randn(),
        randn()
    )
end

value = sweep_contract!(LTN,χ,τ)

Here we have used a TensorNetwork instead of a LabelledTensorNetwork. In a LabelledTensorNetwork each tensor can be labelled by an arbitrary type, which is accomplished by storing the network as a dictionary, which can incur significant overheads. TensorNetwork is built using vectors, which each label now needs to be labelled by an integer 1 to n, but can be significantly faster. While less flexible, TensorNetwork should be preferred in performance-sensitive settings.

You might also like...
 Pretty Tensor - Fluent Neural Networks in TensorFlow
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Comments
  • Restructure code base and depend on DataStructures rather than copying code.

    Restructure code base and depend on DataStructures rather than copying code.

    • Organize some files in subdirectories
    • SweepContractor.jl uses a data structure copied and modified from DataStructures.jl. This PR minimizes the number of files copied and instead depends as much as possible on DataStructures.jl
    • Creates a test suite with a few tests taken from the examples.
    opened by jlapeyre 0
Releases(v0.1.7)
Owner
Christopher T. Chubb
Christopher T. Chubb
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
Pytorch implementation of

EfficientTTS Unofficial Pytorch implementation of "EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture"(arXiv). Disclaimer: Somebo

Liu Songxiang 109 Nov 16, 2022
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
FLVIS: Feedback Loop Based Visual Initial SLAM

FLVIS Feedback Loop Based Visual Inertial SLAM 1-Video EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform 2-Relevent Publication: Under Re

UAV Lab - HKPolyU 182 Dec 04, 2022
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
FreeSOLO for unsupervised instance segmentation, CVPR 2022

FreeSOLO: Learning to Segment Objects without Annotations This project hosts the code for implementing the FreeSOLO algorithm for unsupervised instanc

NVIDIA Research Projects 253 Jan 02, 2023
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

106 Dec 14, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022