PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

Related tags

Deep Learningpicard
Overview


make it parse

build license

This is the official implementation of the following paper:

Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP).

If you use this code, please cite:

@inproceedings{Scholak2021:PICARD,
  author = {Torsten Scholak and Nathan Schucher and Dzmitry Bahdanau},
  title = {PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models},
  booktitle = {Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
  year = {2021},
  publisher = {Association for Computational Linguistics},
}

Overview

This code implements:

  • The PICARD algorithm for constrained decoding from language models.
  • A text-to-SQL semantic parser based on pre-trained sequence-to-sequence models and PICARD achieving state-of-the-art performance on both the Spider and the CoSQL datasets.

About PICARD

TL;DR: We introduce PICARD -- a new method for simple and effective constrained decoding from large pre-trained language models. On the challenging Spider and CoSQL text-to-SQL datasets, PICARD significantly improves the performance of fine-tuned but otherwise unmodified T5 models. Using PICARD, our T5-3B models achieved state-of-the-art performance on both Spider and CoSQL.

In text-to-SQL translation, the goal is to translate a natural language question into a SQL query. There are two main challenges to this task:

  1. The generated SQL needs to be semantically correct, that is, correctly reflect the meaning of the question.
  2. The SQL also needs to be valid, that is, it must not result in an execution error.

So far, there has been a trade-off between these two goals: The second problem can be solved by using a special decoder architecture that -- by construction -- always produces valid SQL. This is the approach taken by most prior work. Those decoders are called "constrained decoders", and they need to be trained from scratch on the text-to-SQL dataset. However, this limits the generality of the decoders, which is a problem for the first goal.

A better approach would be to use a pre-trained encoder-decoder model and to constrain its decoder to produce valid SQL after fine-tuning the model on the text-to-SQL task. This is the approach taken by the PICARD algorithm.

How is PICARD different from existing constrained decoders?

  • It’s an incremental parsing algorithm that integrates with ordinary beam search.
  • It doesn’t require any training.
  • It doesn’t require modifying the model.
  • It works with any model that generates a sequence of tokens (including language models).
  • It doesn’t require a special vocabulary.
  • It works with character-, sub-word-, and word-level language models.

How does PICARD work?

The following picture shows how PICARD is integrated with beam search.



Decoding starts from the left and proceeds to the right. The algorithm begins with a single token (usually <s>), and then keeps expanding the beam with hypotheses generated token-by-token by the decoder. At each decoding step and for each hypothesis, PICARD checks whether the next top-k tokens are valid. In the image above, only 3 token predictions are shown, and k is set to 2. Valid tokens () are added to the beam. Invalid ones (☒) are discarded. The k+1-th, k+2-th, ... tokens are discarded, too. Like in normal beam search, the beam is pruned to contain only the top-n hypotheses. n is the beam size, and in the image above it is set to 2 as well. Hypotheses that are terminated with the end-of-sentence token (usually </s>) are not expanded further. The algorithm stops when the all hypotheses are terminated or when the maximum number of tokens has been reached.

How does PICARD know whether a token is valid?

In PICARD, checking, accepting, and rejecting of tokens and token sequences is achieved through parsing. Parsing means that we attempt to assemble a data structure from the tokens that are currently in the beam or are about to be added to it. This data structure (and the parsing rules that are used to build it) encode the constraints we want to enforce.

In the case of SQL, the data structure we parse to is the abstract syntax tree (AST) of the SQL query. The parsing rules are defined in a computer program called a parser. Database engines, such as PostgreSQL, MySQL, and SQLite, have their own built-in parser that they use internally to process SQL queries. For Spider and CoSQL, we have implemented a parser that supports a subset of the SQLite syntax and that checks additional constraints on the AST. In our implementation, the parsing rules are made up from simpler rules and primitives that are provided by a third-party parsing library.

PICARD uses a parsing library called attoparsec that supports incremental input. This is a special capability that is not available in many other parsing libraries. You can feed attoparsec a string that represents only part of the expected input to parse. When parsing reaches the end of an input fragment, attoparsec will return a continuation function that can be used to continue parsing. Think of the continuation function as a suspended computation that can be resumed later. Input fragments can be parsed one after the other when they become available until the input is complete.

Herein lies the key to PICARD: Incremental parsing of input fragments is exactly what we need to check tokens one by one during decoding.

In PICARD, parsing is initialized with an empty string, and attoparsec will return the first continuation function. We then call that continuation function with all the token predictions we want to check in the first decoding step. For those tokens that are valid, the continuation function will return a new continuation function that we can use to continue parsing in the next decoding step. For those tokens that are invalid, the continuation function will return a failure value which cannot be used to continue parsing. Such failures are discarded and never end up in the beam. We repeat the process until the end of the input is reached. The input is complete once the model predicts the end-of-sentence token. When that happens, we finalize the parsing by calling the continuation function with an empty string. If the parsing is successful, it will return the final AST. If not, it will return a failure value.

The parsing rules are described at a high level in the PICARD paper. For details, see the PICARD code, specifically the Language.SQL.SpiderSQL.Parse module.

How well does PICARD work?

Let's look at the numbers:

On Spider

URL Exact-set Match Accuracy Execution Accuracy
Dev Test Dev Test
tscholak/cxmefzzi w PICARD 75.5 % 71.9 % 79.3 % 75.1 %
tscholak/cxmefzzi w/o PICARD 71.5 % 68.0 % 74.4 % 70.1 %

Click on the links to download the model.

On CoSQL Dialogue State Tracking

URL Question Match Accuracy Interaction Match Accuracy
Dev Test Dev Test
tscholak/2e826ioa w PICARD 56.9 % 54.6 % 24.2 % 23.7 %
tscholak/2e826ioa w/o PICARD 53.8 % 51.4 % 21.8 % 21.7 %

Click on the links to download the model.

Quick Start

Prerequisites

This repository uses git submodules. Clone it like this:

$ git clone [email protected]:ElementAI/picard.git
$ cd picard
$ git submodule update --init --recursive

Training

The training script is located in seq2seq/run_seq2seq.py. You can run it with:

$ make train

The model will be trained on the Spider dataset by default. You can also train on CoSQL by running make train-cosql.

The training script will create the directory train in the current directory. Training artifacts like checkpoints will be stored in this directory.

The default configuration is stored in configs/train.json. The settings are optimized for a GPU with 40GB of memory.

These training settings should result in a model with at least 71% exact-set-match accuracy on the Spider development set. With PICARD, the accuracy should go up to at least 75%.

We have uploaded a model trained on the Spider dataset to the huggingface model hub, tscholak/cxmefzzi. A model trained on the CoSQL dialog state tracking dataset is available, too, tscholak/2e826ioa.

Evaluation

The evaluation script is located in seq2seq/run_seq2seq.py. You can run it with:

$ make eval

By default, the evaluation will be run on the Spider evaluation set. Evaluation on the CoSQL evaluation set can be run with make eval-cosql.

The evaluation script will create the directory eval in the current directory. The evaluation results will be stored there.

The default configuration is stored in configs/eval.json.

Docker

There are three docker images that can be used to run the code:

  • tscholak/text-to-sql-dev: Base image with development dependencies. Use this for development. Pull it with make pull-dev-image from the docker hub. Rebuild the image with make build-dev-image.
  • tsscholak/text-to-sql-train: Training image with development dependencies but without Picard dependencies. Use this for fine-tuning a model. Pull it with make pull-train-image from the docker hub. Rebuild the image with make build-train-image.
  • tscholak/text-to-sql-eval: Training/evaluation image with all dependencies. Use this for evaluating a fine-tuned model with Picard. This image can also be used for training if you want to run evaluation during training with Picard. Pull it with make pull-eval-image from the docker hub. Rebuild the image with make build-eval-image.

All images are tagged with the current commit hash. The images are built with the buildx tool which is available in the latest docker-ce. Use make init-buildkit to initialize the buildx tool on your machine. You can then use make build-dev-image, make build-train-image, etc. to rebuild the images. Local changes to the code will not be reflected in the docker images unless they are committed to git.

Owner
ElementAI
ElementAI
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J

226 Nov 05, 2022
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
For medical image segmentation

LeViT_UNet For medical image segmentation Our model is based on LeViT (https://github.com/facebookresearch/LeViT). You'd better gitclone its codes. Th

13 Dec 24, 2022
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023