[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

Overview

RegionProxy

Figure 2. Performance vs. GFLOPs on ADE20K val split.

Semantic Segmentation by Early Region Proxy

Yifan Zhang, Bo Pang, Cewu Lu

CVPR 2022 (Poster) [arXiv]

Installation

Note: recommend using the exact version of the packages to avoid running issues.

  1. Install PyTorch 1.7.1 and torchvision 0.8.2 following the official guide.

  2. Install timm 0.4.12 and einops:

    pip install timm==0.4.12 einops
    
  3. This project depends on mmsegmentation 0.17 and mmcv 1.3.13, so you may follow its instructions to setup environment and prepare datasets.

Models

ADE20K

backbone Resolution FLOPs #params. mIoU mIoU (ms+flip) FPS download
ViT-Ti/16 512x512 3.9G 5.8M 42.1 43.1 38.9 [model]
ViT-S/16 512x512 15G 22M 47.6 48.5 32.1 [model]
R26+ViT-S/32 512x512 16G 36M 47.8 49.1 28.5 [model]
ViT-B/16 512x512 59G 87M 49.8 50.5 20.1 [model]
R50+ViT-L/32 640x640 82G 323M 51.0 51.7 12.7 [model]
ViT-L/16 640x640 326G 306M 52.9 53.4 6.6 [model]

Cityscapes

backbone Resolution FLOPs #params. mIoU mIoU (ms+flip) download
ViT-Ti/16 768x768 69G 6M 76.5 77.7 [model]
ViT-S/16 768x768 270G 23M 79.8 81.5 [model]
ViT-B/16 768x768 1064G 88M 81.0 82.2 [model]
ViT-L/16 768x768 - 307M 81.4 82.7 [model]

Evaluation

You may evaluate the model on single GPU by running:

python test.py \
	--config configs/regproxy_ade20k/regproxy-t16-sub4+implicit-mid-4+512x512+160k+adamw-poly+ade20k.py \
	--checkpoint /path/to/ckpt \
	--eval mIoU

To evaluate on multiple GPUs, run:

python -m torch.distributed.launch --nproc_per_node 8 test.py \
	--launcher pytorch \
	--config configs/regproxy_ade20k/regproxy-t16-sub4+implicit-mid-4+512x512+160k+adamw-poly+ade20k.py \
	--checkpoint /path/to/ckpt 
	--eval mIoU

You may add --aug-test to enable multi-scale + flip evaluation. The test.py script is mostly copy-pasted from mmsegmentation. Please refer to this link for more usage (e.g., visualization).

Training

The first step is to prepare the pre-trained weights. Following Segmenter, we use AugReg pre-trained weights on our tiny, small and large models, and we use DeiT pre-trained weights on our base models. Do following steps to prepare the pre-trained weights for model initialization:

  1. For DeiT weight, simply download from this link. For AugReg weights, first acquire the timm-style models:

    import timm
    m = timm.create_model('vit_tiny_patch16_384', pretrained=True)

    The full list of entries can be found here (vanilla ViTs) and here (hybrid models).

  2. Convert the timm models to mmsegmentation style using this script.

We train all models on 8 V100 GPUs. For example, to train RegProxy-Ti/16, run:

python -m torch.distributed.launch --nproc_per_node 8 train.py 
	--launcher pytorch \
	--config configs/regproxy_ade20k/regproxy-t16-sub4+implicit-mid-4+512x512+160k+adamw-poly+ade20k.py \
	--work-dir /path/to/workdir \
	--options model.pretrained=/path/to/pretrained/model

You may need to adjust data.samples_per_gpu if you plan to train on less GPUs. Please refer to this link for more training optioins.

Citation

@article{zhang2022semantic,
  title={Semantic Segmentation by Early Region Proxy},
  author={Zhang, Yifan and Pang, Bo and Lu, Cewu},
  journal={arXiv preprint arXiv:2203.14043},
  year={2022}
}
Owner
Yifan
Yifan
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 04, 2023
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

CMT Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award) [Paper] [Site] Directory Struc

Zhaokai Wang 198 Dec 27, 2022
Repository of 3D Object Detection with Pointformer (CVPR2021)

3D Object Detection with Pointformer This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This wo

Zhuofan Xia 117 Jan 06, 2023
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
Self-Supervised Contrastive Learning of Music Spectrograms

Self-Supervised Music Analysis Self-Supervised Contrastive Learning of Music Spectrograms Dataset Songs on the Billboard Year End Hot 100 were collect

27 Dec 10, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

Dennis Bappert 104 Nov 25, 2022
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022
GDSC-ML Team Interview Task

GDSC-ML-Team---Interview-Task Task 1 : Clean or Messy room In this task we have to classify the given test images as clean or messy. - Link for datase

Aayush. 1 Jan 19, 2022
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022