General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

Overview

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021

Paper | Project Page

    

Outline

Dependencies

Testing with Trained Weights

Model Preparation

Download the models here:

  • pretrain_clean_line_drawings (105 MB): for vectorization
  • pretrain_rough_sketches (105 MB): for rough sketch simplification
  • pretrain_faces (105 MB): for photograph to line drawing

Then, place them in this file structure:

outputs/
    snapshot/
        pretrain_clean_line_drawings/
        pretrain_rough_sketches/
        pretrain_faces/

Usage

Choose the image in the sample_inputs/ directory, and run one of the following commands for each task. The results will be under outputs/sampling/.

python3 test_vectorization.py --input muten.png

python3 test_rough_sketch_simplification.py --input rocket.png

python3 test_photograph_to_line.py --input 1390.png

Note!!! Our approach starts drawing from a randomly selected initial position, so it outputs different results in every testing trial (some might be fine and some might not be good enough). It is recommended to do several trials to select the visually best result. The number of outputs can be defined by the --sample argument:

python3 test_vectorization.py --input muten.png --sample 10

python3 test_rough_sketch_simplification.py --input rocket.png --sample 10

python3 test_photograph_to_line.py --input 1390.png --sample 10

Reproducing Paper Figures: our results (download from here) are selected by doing a certain number of trials. Apparently, it is required to use the same initial drawing positions to reproduce our results.

Additional Tools

a) Visualization

Our vector output is stored in a npz package. Run the following command to obtain the rendered output and the drawing order. Results will be under the same directory of the npz file.

python3 tools/visualize_drawing.py --file path/to/the/result.npz 

b) GIF Making

To see the dynamic drawing procedure, run the following command to obtain the gif. Result will be under the same directory of the npz file.

python3 tools/gif_making.py --file path/to/the/result.npz 

c) Conversion to SVG

Our vector output in a npz package is stored as Eq.(1) in the main paper. Run the following command to convert it to the svg format. Result will be under the same directory of the npz file.

python3 tools/svg_conversion.py --file path/to/the/result.npz 
  • The conversion is implemented in two modes (by setting the --svg_type argument):
    • single (default): each stroke (a single segment) forms a path in the SVG file
    • cluster: each continuous curve (with multiple strokes) forms a path in the SVG file

Important Notes

In SVG format, all the segments on a path share the same stroke-width. While in our stroke design, strokes on a common curve have different widths. Inside a stroke (a single segment), the thickness also changes linearly from an endpoint to another. Therefore, neither of the two conversion methods above generate visually the same results as the ones in our paper. (Please mention this issue in your paper if you do qualitative comparisons with our results in SVG format.)


Training

Preparations

Download the models here:

  • pretrain_neural_renderer (40 MB): the pre-trained neural renderer
  • pretrain_perceptual_model (691 MB): the pre-trained perceptual model for raster loss

Download the datasets here:

  • QuickDraw-clean (14 MB): for clean line drawing vectorization. Taken from QuickDraw dataset.
  • QuickDraw-rough (361 MB): for rough sketch simplification. Synthesized by the pencil drawing generation method from Sketch Simplification.
  • CelebAMask-faces (370 MB): for photograph to line drawing. Processed from the CelebAMask-HQ dataset.

Then, place them in this file structure:

datasets/
    QuickDraw-clean/
    QuickDraw-rough/
    CelebAMask-faces/
outputs/
    snapshot/
        pretrain_neural_renderer/
        pretrain_perceptual_model/

Running

It is recommended to train with multi-GPU. We train each task with 2 GPUs (each with 11 GB).

python3 train_vectorization.py

python3 train_rough_photograph.py --data rough

python3 train_rough_photograph.py --data face

Citation

If you use the code and models please cite:

@article{mo2021virtualsketching,
  title   = {General Virtual Sketching Framework for Vector Line Art},
  author  = {Mo, Haoran and Simo-Serra, Edgar and Gao, Chengying and Zou, Changqing and Wang, Ruomei},
  journal = {ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2021)},
  year    = {2021},
  volume  = {40},
  number  = {4},
  pages   = {51:1--51:14}
}
A foreign language learning aid using a neural network to predict probability of translating foreign words

Langy Langy is a reading-focused foreign language learning aid orientated towards young children. Reading is an activity that every child knows. It is

Shona Lowden 6 Nov 17, 2021
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
Implementation for Panoptic-PolarNet (CVPR 2021)

Panoptic-PolarNet This is the official implementation of Panoptic-PolarNet. [ArXiv paper] Introduction Panoptic-PolarNet is a fast and robust LiDAR po

Zixiang Zhou 126 Jan 01, 2023
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 01, 2022