Package for working with hypernetworks in PyTorch.

Overview

Hypernetworks for PyTorch

This package contains utilities that make it easy to work with hypernetworks in PyTorch.

Installation

You can either install the latest package version via

python3 -m pip install hypnettorch

or, you directly install the current sources

python3 -m pip install git+https://github.com/chrhenning/hypnettorch

Installation for developers

If you actively develop the package, it is easiest to install it in development mode, such that all changes that are done to source files are directly visible when you use the package.

Clone the repository to a location of your choice

git clone https://github.com/chrhenning/hypnettorch.git

and move inside the cloned repo

cd ./hypnettorch

Now, you can simply install the package in editable mode, which will ensure that you can easily update the package sources (cf. development mode)

pip3 install --editable . --user

Since the package was installed in editable mode, you can always update the sources simply by pulling the most recent code

git pull

You can uninstall the package at any point by running python3 setup.py develop -u.

Usage

The basic functionalities of the package are quite intuitive and easy to use, e.g.,

from hypnettorch.mnets import MLP
net = MLP()

There are several tutorials. Check out the getting started tutorial when working with hypnettorch for the first time.

Documentation

The documentation can be found here.

Note for developers

The documentation can be build using

python3 setup.py build_sphinx

and opened via the file index.html.

Citation

When using this package in your research project, please consider citing one of our papers for which this package has been developed.

@inproceedings{oshg2019hypercl,
title={Continual learning with hypernetworks},
author={Johannes von Oswald and Christian Henning and Jo{\~a}o Sacramento and Benjamin F. Grewe},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://arxiv.org/abs/1906.00695}
}
@inproceedings{ehret2020recurrenthypercl,
  title={Continual Learning in Recurrent Neural Networks},
  author={Benjamin Ehret and Christian Henning and Maria R. Cervera and Alexander Meulemans and Johannes von Oswald and Benjamin F. Grewe},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://arxiv.org/abs/2006.12109}
}
@inproceedings{posterior:replay:2021:henning:cervera,
title={Posterior Meta-Replay for Continual Learning}, 
      author={Christian Henning and Maria R. Cervera and Francesco D'Angelo and Johannes von Oswald and Regina Traber and Benjamin Ehret and Seijin Kobayashi and João Sacramento and Benjamin F. Grewe},
booktitle={Conference on Neural Information Processing Systems},
year={2021},
url={https://arxiv.org/abs/2103.01133}
}
Owner
Christian Henning
Machine Learning Researcher
Christian Henning
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023
This is a custom made virus code in python, using tkinter module.

skeleterrorBetaV0.1-Virus-code This is a custom made virus code in python, using tkinter module. This virus is not harmful to the computer, it only ma

AR 0 Nov 21, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver

Shape As Points (SAP) Paper | Project Page | Short Video (6 min) | Long Video (12 min) This repository contains the implementation of the paper: Shape

394 Dec 30, 2022
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023
Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Viewmaker Networks: Learning Views for Unsupervised Representation Learning Alex Tamkin, Mike Wu, and Noah Goodman Paper link: https://arxiv.org/abs/2

Alex Tamkin 31 Dec 01, 2022