The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

Overview

AICITY2021_Track2_DMT

The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

Introduction

Detailed information of NVIDIA AI City Challenge 2021 can be found here.

The code is modified from AICITY2020_DMT_VehicleReID, TransReID and reid_strong baseline.

Get Started

  1. cd to folder where you want to download this repo

  2. Run git clone https://github.com/michuanhaohao/AICITY2021_Track2_DMT.git

  3. Install dependencies: pip install requirements.txt

    We use cuda 11.0/python 3.7/torch 1.6.0/torchvision 0.7.0 for training and testing.

  4. Prepare Datasets Download Original dataset, Cropped_dataset, and SPGAN_dataset.

├── AIC21/
│   ├── AIC21_Track2_ReID/
│   	├── image_train/
│   	├── image_test/
│   	├── image_query/
│   	├── train_label.xml
│   	├── ...
│   	├── training_part_seg/
│   	    ├── cropped_patch/
│   	├── cropped_aic_test
│   	    ├── image_test/
│   	    ├── image_query/		
│   ├── AIC21_Track2_ReID_Simulation/
│   	├── sys_image_train/
│   	├── sys_image_train_tr/
  1. Put pre-trained models into ./pretrained/
    • resnet101_ibn_a-59ea0ac6.pth, densenet169_ibn_a-9f32c161.pth, resnext101_ibn_a-6ace051d.pth and se_resnet101_ibn_a-fabed4e2.pth can be downloaded from IBN-Net
    • resnest101-22405ba7.pth can be downloaded from ResNest
    • jx_vit_base_p16_224-80ecf9dd.pth can be downloaded from here

Trainint and Test

We utilize 1 GPU (32GB) for training. You can train and test one backbone as follow.

# ResNext101-IBN-a
python train.py --config_file configs/stage1/resnext101a_384.yml MODEL.DEVICE_ID "('0')"
python train_stage2_v1.py --config_file configs/stage2/resnext101a_384.yml MODEL.DEVICE_ID "('0')" OUTPUT_DIR './logs/stage2/resnext101a_384/v1'
python train_stage2_v2.py --config_file configs/stage2/resnext101a_384.yml MODEL.DEVICE_ID "('0')" OUTPUT_DIR './logs/stage2/resnext101a_384/v2'

python test.py --config_file configs/stage2/101a_384.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT './logs/stage2/resnext101a_384/v1/resnext101_ibn_a_2.pth' OUTPUT_DIR './logs/stage2/resnext101a_384/v1'
python test.py --config_file configs/stage2/101a_384.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT './logs/stage2/resnext101a_384/v2/resnext101_ibn_a_2.pth' OUTPUT_DIR './logs/stage2/resnext101a_384/v2'

You should train camera and viewpoint models before the inference stage. You also can directly use our trained results (track_cam_rk.npy and track_view_rk.npy):

python train_cam.py --config_file configs/camera_view/camera_101a.yml
python train_view.py --config_file configs/camera_view/view_101a.yml

You can train all eight backbones by checking run.sh. Then, you can ensemble all results:

python ensemble.py

All trained models can be downloaded from here

Leaderboard

TeamName mAP Link
DMT(Ours) 0.7445 code
NewGeneration 0.7151 code
CyberHu 0.6550 code

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{luo2021empirical,
 title={An Empirical Study of Vehicle Re-Identification on the AI City Challenge},
 author={Luo, Hao and Chen, Weihua and Xu Xianzhe and Gu Jianyang and Zhang, Yuqi and Chong Liu and Jiang Qiyi and He, Shuting and Wang, Fan and Li, Hao},
 booktitle={Proc. CVPR Workshops},
 year={2021}
}
Owner
Hao Luo
Ph.D., Alibaba DAMO Academy&Zhejiang University
Hao Luo
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Python Jupyter kernel using Poetry for reproducible notebooks

Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id

Pathbird 204 Jan 04, 2023
"Learning Free Gait Transition for Quadruped Robots vis Phase-Guided Controller"

PhaseGuidedControl The current version is developed based on the old version of RaiSim series, and possibly requires further modification. It will be

X-Mechanics 12 Oct 21, 2022
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
Code accompanying "Adaptive Methods for Aggregated Domain Generalization"

Adaptive Methods for Aggregated Domain Generalization (AdaClust) Official Pytorch Implementation of Adaptive Methods for Aggregated Domain Generalizat

Xavier Thomas 15 Sep 20, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023
atmaCup #11 の Public 4th / Pricvate 5th Solution のリポジトリです。

#11 atmaCup 2021-07-09 ~ 2020-07-21 に行われた #11 [初心者歓迎! / 画像編] atmaCup のリポジトリです。結果は Public 4th / Private 5th でした。 フレームワークは PyTorch で、実装は pytorch-image-m

Tawara 12 Apr 07, 2022
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023