Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Related tags

Deep LearningFeedBack
Overview

Kaggle Feedback Prize - Evaluating Student Writing 15th solution


First of all, I would like to thank the excellent notebooks and discussions from https://www.kaggle.com/abhishek/two-longformers-are-better-than-1 @abhishek https://www.kaggle.com/c/feedback-prize-2021/discussion/308992 @hengck23 https://www.kaggle.com/librauee/infer-fast-ensemble-models @librauee I learned a lot from their work. This is the second kaggle competition we have participated in, and although we are one short of gold, we are already very satisfied. In our work, I am mainly responsible for the training of the model, and @yscho1 is mainly responsible for the post-processing.

Highlight

  • In the final commit, we ensemble 6 debreta_xlarge, 6 longformer-large-4096, 2 funnel-large, 2 deberta-v3-large and 2 deberta-large. We set the max_length to 1600. We use Fast Gradient Method(FGM) to improve robustness and use Exponential Moving Average(EMA) to smooth training.

  • Use optuna to learn all the hyperparameters in the post processing stage.

  • CV results show that deberta-xlarge(0.7092) > deberta-large(0.7025) > deberta-large-v3(0.6842) > funnel-large(0.6798) = longformer-large-4096(0.6748)

  • Merge consecutive predictions with same label, for example we merge [B-Lead, I-Lead, I-Lead], [B-Lead, I-Lead] into one single prediction. We only do this operation when the label is in ['Lead', 'Position', 'Concluding', 'Rebuttal'], since there are not consecutive predictions for these labels in the training data.

  • Filter "Lead" and "Concluding". There are only one Lead label and Concluding Label in almost all the trainging data, so we only keep the predictions that has higher score than threshold. Besides, we found that merge two Lead can increase cv further.

concluding_df = sorted(concluding_df, key=lambda x: np.mean(x[4]), reverse=True)
new_begin = min(concluding_df[0][3][0], concluding_df[1][3][0])
new_end = max(concluding_df[0][3][-1], concluding_df[1][3][-1])
  • Since the score is based on the overlap between prediction and ground truth, so we extend the predictions from word_list[begin:end] to word_list[begin - 1: end + 1]. Hoping the extended predictions can better hit ground truth and accross the 50% threshold.

  • Scaling. The probabilities of each token are multiplied by a factor. The factors are obtained through genetic algorithm search.

  • There are some other attempts but didn't work well. These attempts are included in the inference notebook.

Code

# Model Training
bash script/run_Base_train_gpu.sh
# Model Predict
bash script/run_predict.sh
# Params Learning
bash script/run_params_test.sh
Owner
Lingyuan Zhang
Lingyuan Zhang
Swapping face using Face Mesh with TensorFlow Lite

Swapping face using Face Mesh with TensorFlow Lite

iwatake 17 Apr 26, 2022
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022