A small library for creating and manipulating custom JAX Pytree classes

Overview

Treeo

A small library for creating and manipulating custom JAX Pytree classes

  • Light-weight: has no dependencies other than jax.
  • Compatible: Treeo Tree objects are compatible with any jax function that accepts Pytrees.
  • Standards-based: treeo.field is built on top of python's dataclasses.field.
  • Flexible: Treeo is compatible with both dataclass and non-dataclass classes.

Treeo lets you easily create class-based Pytrees so your custom objects can easily interact seamlessly with JAX. Uses of Treeo can range from just creating simple simple JAX-aware utility classes to using it as the core abstraction for full-blown frameworks. Treeo was originally extracted from the core of Treex and shares a lot in common with flax.struct.

Documentation | User Guide

Installation

Install using pip:

pip install treeo

Basics

With Treeo you can easily define your own custom Pytree classes by inheriting from Treeo's Tree class and using the field function to declare which fields are nodes (children) and which are static (metadata):

import treeo as to

@dataclass
class Person(to.Tree):
    height: jnp.array = to.field(node=True) # I am a node field!
    name: str = to.field(node=False) # I am a static field!

field is just a wrapper around dataclasses.field so you can define your Pytrees as dataclasses, but Treeo fully supports non-dataclass classes as well. Since all Tree instances are Pytree they work with the various functions from thejax library as expected:

p = Person(height=jnp.array(1.8), name="John")

# Trees can be jitted!
jax.jit(lambda person: person)(p) # Person(height=array(1.8), name='John')

# Trees can be mapped!
jax.tree_map(lambda x: 2 * x, p) # Person(height=array(3.6), name='John')

Kinds

Treeo also include a kind system that lets you give semantic meaning to fields (what a field represents within your application). A kind is just a type you pass to field via its kind argument:

class Parameter: pass
class BatchStat: pass

class BatchNorm(to.Tree):
    scale: jnp.ndarray = to.field(node=True, kind=Parameter)
    mean: jnp.ndarray = to.field(node=True, kind=BatchStat)

Kinds are very useful as a filtering mechanism via treeo.filter:

model = BatchNorm(...)

# select only Parameters, mean is filtered out
params = to.filter(model, Parameter) # BatchNorm(scale=array(...), mean=Nothing)

Nothing behaves like None in Python, but it is a special value that is used to represent the absence of a value within Treeo.

Treeo also offers the merge function which lets you rejoin filtered Trees with a logic similar to Python dict.update but done recursively:

def loss_fn(params, model, ...):
    # add traced params to model
    model = to.merge(model, params)
    ...

# gradient only w.r.t. params
params = to.filter(model, Parameter) # BatchNorm(scale=array(...), mean=Nothing)
grads = jax.grad(loss_fn)(params, model, ...)

For a more in-depth tour check out the User Guide.

Examples

A simple Tree

from dataclasses import dataclass
import treeo as to

@dataclass
class Character(to.Tree):
    position: jnp.ndarray = to.field(node=True)    # node field
    name: str = to.field(node=False, opaque=True)  # static field

character = Character(position=jnp.array([0, 0]), name='Adam')

# character can freely pass through jit
@jax.jit
def update(character: Character, velocity, dt) -> Character:
    character.position += velocity * dt
    return character

character = update(character velocity=jnp.array([1.0, 0.2]), dt=0.1)

A Stateful Tree

from dataclasses import dataclass
import treeo as to

@dataclass
class Counter(to.Tree):
    n: jnp.array = to.field(default=jnp.array(0), node=True) # node
    step: int = to.field(default=1, node=False) # static

    def inc(self):
        self.n += self.step

counter = Counter(step=2) # Counter(n=jnp.array(0), step=2)

@jax.jit
def update(counter: Counter):
    counter.inc()
    return counter

counter = update(counter) # Counter(n=jnp.array(2), step=2)

# map over the tree

Full Example - Linear Regression

import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt
import numpy as np

import treeo as to


class Linear(to.Tree):
    w: jnp.ndarray = to.node()
    b: jnp.ndarray = to.node()

    def __init__(self, din, dout, key):
        self.w = jax.random.uniform(key, shape=(din, dout))
        self.b = jnp.zeros(shape=(dout,))

    def __call__(self, x):
        return jnp.dot(x, self.w) + self.b


@jax.value_and_grad
def loss_fn(model, x, y):
    y_pred = model(x)
    loss = jnp.mean((y_pred - y) ** 2)

    return loss


def sgd(param, grad):
    return param - 0.1 * grad


@jax.jit
def train_step(model, x, y):
    loss, grads = loss_fn(model, x, y)
    model = jax.tree_map(sgd, model, grads)

    return loss, model


x = np.random.uniform(size=(500, 1))
y = 1.4 * x - 0.3 + np.random.normal(scale=0.1, size=(500, 1))

key = jax.random.PRNGKey(0)
model = Linear(1, 1, key=key)

for step in range(1000):
    loss, model = train_step(model, x, y)
    if step % 100 == 0:
        print(f"loss: {loss:.4f}")

X_test = np.linspace(x.min(), x.max(), 100)[:, None]
y_pred = model(X_test)

plt.scatter(x, y, c="k", label="data")
plt.plot(X_test, y_pred, c="b", linewidth=2, label="prediction")
plt.legend()
plt.show()
Comments
  • Use field kinds within tree_map

    Use field kinds within tree_map

    Firstly, thanks for creating Treeo - it's a fantastic package.

    Is there a way to use methods defined within a field's kind object within a tree_map call? For example, consider the following MWE

    import jax.numpy as jnp
    
    class Parameter:
        def transform(self):
            return jnp.exp(self)
    
    
    @dataclass
    class Model(to.Tree):
        lengthscale: jnp.array = to.field(
            default=jnp.array([1.0]), node=True, kind=Parameter
        )
    

    is there a way that I could do something similar to the following pseudocode snippet:

    m = Model()
    jax.tree_map(lamdba x: x.transform(), to.filter(m, Parameter))
    
    opened by thomaspinder 10
  • Stacking of Treeo.Tree

    Stacking of Treeo.Tree

    I'm running into some issues when trying to stack a list of Treeo.Tree objects into a single object. I've made a short example:

    from dataclasses import dataclass
    
    import jax
    import jax.numpy as jnp
    import treeo as to
    
    @dataclass
    class Person(to.Tree):
        height: jnp.array = to.field(node=True) # I am a node field!
        age_static: jnp.array = to.field(node=False) # I am a static field!, I should not be updated.
        name: str = to.field(node=False) # I am a static field!
    
    persons = [
        Person(height=jnp.array(1.8), age_static=jnp.array(25.), name="John"),
        Person(height=jnp.array(1.7), age_static=jnp.array(100.), name="Wald"),
        Person(height=jnp.array(2.1), age_static=jnp.array(50.), name="Karen")
    ]
    
    # Stack (struct of arrays instead of list of structs)
    jax.tree_map(lambda *values: jnp.stack(values, axis=0), *persons)
    

    However, this fails with the following exception:

    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    Cell In[1], line 18
         11     name: str = to.field(node=False) # I am a static field!
         13 persons = [
         14     Person(height=jnp.array(1.8), age_static=jnp.array(25.), name="John"),
         15     Person(height=jnp.array(1.7), age_static=jnp.array(100.), name="Wald"),
         16     Person(height=jnp.array(2.1), age_static=jnp.array(50.), name="Karen")
         17 ]
    ---> 18 jax.tree_map(lambda *values: jnp.stack(values, axis=0), *persons)
    
    File ~/workspace/lcms_polymer_model/env/env_conda_local/lcms_polymer_model_env/lib/python3.10/site-packages/jax/_src/tree_util.py:199, in tree_map(f, tree, is_leaf, *rest)
        166 """Maps a multi-input function over pytree args to produce a new pytree.
        167 
        168 Args:
       (...)
        196   [[5, 7, 9], [6, 1, 2]]
        197 """
        198 leaves, treedef = tree_flatten(tree, is_leaf)
    --> 199 all_leaves = [leaves] + [treedef.flatten_up_to(r) for r in rest]
        200 return treedef.unflatten(f(*xs) for xs in zip(*all_leaves))
    
    File ~/workspace/lcms_polymer_model/env/env_conda_local/lcms_polymer_model_env/lib/python3.10/site-packages/jax/_src/tree_util.py:199, in <listcomp>(.0)
        166 """Maps a multi-input function over pytree args to produce a new pytree.
        167 
        168 Args:
       (...)
        196   [[5, 7, 9], [6, 1, 2]]
        197 """
        198 leaves, treedef = tree_flatten(tree, is_leaf)
    --> 199 all_leaves = [leaves] + [treedef.flatten_up_to(r) for r in rest]
        200 return treedef.unflatten(f(*xs) for xs in zip(*all_leaves))
    
    ValueError: Mismatch custom node data: {'_field_metadata': {'height': <treeo.types.FieldMetadata object at 0x7fb8b898ba00>, 'age_static': <treeo.types.FieldMetadata object at 0x7fb8b90c0a90>, 'name': <treeo.types.FieldMetadata object at 0x7fb8b8bf9db0>, '_field_metadata': <treeo.types.FieldMetadata object at 0x7fb8b89b56f0>, '_factory_fields': <treeo.types.FieldMetadata object at 0x7fb8b89b5750>, '_default_field_values': <treeo.types.FieldMetadata object at 0x7fb8b89b5660>, '_subtrees': <treeo.types.FieldMetadata object at 0x7fb8b89b5720>}, 'age_static': DeviceArray(25., dtype=float32, weak_type=True), 'name': 'John'} != {'_field_metadata': {'height': <treeo.types.FieldMetadata object at 0x7fb8b898ba00>, 'age_static': <treeo.types.FieldMetadata object at 0x7fb8b90c0a90>, 'name': <treeo.types.FieldMetadata object at 0x7fb8b8bf9db0>, '_field_metadata': <treeo.types.FieldMetadata object at 0x7fb8b89b56f0>, '_factory_fields': <treeo.types.FieldMetadata object at 0x7fb8b89b5750>, '_default_field_values': <treeo.types.FieldMetadata object at 0x7fb8b89b5660>, '_subtrees': <treeo.types.FieldMetadata object at 0x7fb8b89b5720>}, 'age_static': DeviceArray(100., dtype=float32, weak_type=True), 'name': 'Wald'}; value: Person(height=DeviceArray(1.7, dtype=float32, weak_type=True), age_static=DeviceArray(100., dtype=float32, weak_type=True), name='Wald').
    

    Versions used:

    • JAX: 0.3.20
    • Treeo: 0.0.10

    From a certain perspective this is expected because jax.tree_map does not apply to static (node=False) fields. So in this sense, this might not be really an issue with Treeo. However, I'm looking for some guidance on how to still be able to stack objects like this with static fields. Has anyone has tried something similar and come up with a nice solution?

    opened by peterroelants 3
  • Jitting twice for a class method

    Jitting twice for a class method

    import jax
    import jax.numpy as jnp
    import treeo as to
    
    class A(to.Tree):
        X: jnp.array = to.field(node=True)
        
        def __init__(self):
            self.X = jnp.ones((50, 50))
    
        @jax.jit
        def f(self, Y):
            return jnp.sum(Y ** 2) * jnp.sum(self.X ** 2)
    
    Y = jnp.ones(2)
    for i in range(5):
        print(A.f._cache_size())
        a = A()
        a.f(Y)
    

    The output of the above is 0 1 2 2 2 with jax 0.3.15. No idea what's happening. It seems to work fine with 0.3.10 and the output is 0 1 1 1 1. Thanks.

    opened by pipme 2
  • Change Mutable API

    Change Mutable API

    Changes

    • Previously self.mutable(*args, method=method, **kwargs)
    • Is now...... self.mutable(method=method)(*args, **kwargs)
    • Opaque API is removed
    • inplace argument is now only available for apply.
    • Immutable.{mutable, toplevel_mutable} methods are removed.
    fix 
    opened by cgarciae 1
  • Improve mutability support

    Improve mutability support

    Changes

    • Fixes issues with immutability in compact context
    • The make_mutable context manager and the mutable function now expose a toplevel_only: bool argument.
    • Adds a _get_unbound_method private function in utils.
    feature 
    opened by cgarciae 1
  • Bug Fixes from 0.0.11

    Bug Fixes from 0.0.11

    Changes

    • Fixes an issues that disabled mutability inside __init__ for Immutable classes when TreeMeta's `constructor method is overloaded.
    • Fixes the Apply.apply mixin method.

    Closes cgarciae/treex#68

    fix 
    opened by cgarciae 1
  • Adds support for immutable Trees

    Adds support for immutable Trees

    Changes

    • Adds an Immutable mixin that can make Trees effectively immutable (as far as python permits).
    • Immutable contains the .replace and .mutable methods that let you manipulate state in a functionally pure fashion.
    • Adds the mutable function transformation / decorator which lets you turn function that perform mutable operation into pure functions.
    opened by cgarciae 1
  • Add the option of using add_field_info inside map

    Add the option of using add_field_info inside map

    This PR addresses the comments made in #2 . An additional argument is created within map to allow for a field_info boolean flag to passed. When true, jax.tree_map is carried out under the with add_field_info(): context manager.

    Tests have been added to test for correct function application on classes contain Trees with mixed kind types.

    A brief section has been added to the documentation to reflect the above changes.

    opened by thomaspinder 1
  • Get all unique kinds

    Get all unique kinds

    Hi,

    Is there a way that I can get a list of all the unique kinds within a nested dataclass? For example:

    class KindOne: pass
    class KindTwo: pass
    
    @dataclass
    class SubModel(to.Tree):
        parameter: jnp.array = to.field(
            default=jnp.array([1.0]), node=True, kind=KindOne
        )
    
    
    @dataclass 
    class Model(to.Tree):
        parameter: jnp.array = to.field(
            default=jnp.array([1.0]), node=True, kind=KindTwo
        )
    
    m = Model()
    
    m.unique_kinds() # [KindOne, KindTwo]
    
    opened by thomaspinder 1
  • Compact

    Compact

    Changes

    • Removes opaque_is_equal, same functionality available through opaque.
    • Adds compact decorator that enable the definition of Tree subnodes at runtime.
    • Adds the Compact mixin that adds the first_run property and the get_field method.
    opened by cgarciae 0
  • Relax jax/jaxlib version constraints

    Relax jax/jaxlib version constraints

    Now that jax 0.3.0 and jaxlib 0.3.0 have been released the version constraints in pyproject.toml are outdated.

    https://github.com/cgarciae/treeo/blob/a402f3f69557840cfbee4d7804964b8e2c47e3f7/pyproject.toml#L16-L17

    This corresponds to the version constraint jax<0.3.0,>=0.2.18 (https://python-poetry.org/docs/dependency-specification/#caret-requirements). Now that jax v0.3.0 has been released (https://github.com/google/jax/releases/tag/jax-v0.3.0) this doesn't work with the latest version. I think the same applies to jaxlib as well, since it also got upgraded to v0.3.0 (https://github.com/google/jax/releases/tag/jaxlib-v0.3.0).

    opened by samuela 4
  • TracedArrays treated as nodes by default

    TracedArrays treated as nodes by default

    Current for convenience all non-Tree fields which are not declared are set to static fields as most fields actually are, however, for more complex applications a Traced Array might actually be passed when a static field is usually expected.

    A simple solution is change the current node policy to treat any field containing a TracedArray as a node, this would be the same as the current policy for Tree fields.

    opened by cgarciae 0
Releases(0.2.1)
Owner
Cristian Garcia
ML Engineer at Quansight, working on Treex and Elegy.
Cristian Garcia
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

0 Jan 16, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
Anomaly detection related books, papers, videos, and toolboxes

Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify

Yue Zhao 6.7k Dec 31, 2022
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

33 Nov 27, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022