Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Overview

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning.

Circuit Training is an open-source framework for generating chip floor plans with distributed deep reinforcement learning. This framework reproduces the methodology published in the Nature 2021 paper:

A graph placement methodology for fast chip design. Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa, William Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter & Jeff Dean, 2021. Nature, 594(7862), pp.207-212. [PDF]

Our hope is that Circuit Training will foster further collaborations between academia and industry, and enable advances in deep reinforcement learning for Electronic Design Automation, as well as, general combinatorial and decision making optimization problems. Capable of optimizing chip blocks with hundreds of macros, Circuit Training automatically generates floor plans in hours, whereas baseline methods often require human experts in the loop and can take months.

Circuit training is built on top of TF-Agents and TensorFlow 2.x with support for eager execution, distributed training across multiple GPUs, and distributed data collection scaling to 100s of actors.

Table of contents

Features
Installation
Quick start
Results
Testing
Releases
How to contribute
AI Principles
Contributors
How to cite
Disclaimer

Features

  • Places netlists with hundreds of macros and millions of stdcells (in clustered format).
  • Computes both macro location and orientation (flipping).
  • Optimizes multiple objectives including wirelength, congestion, and density.
  • Supports alignment of blocks to the grid, to model clock strap or macro blockage.
  • Supports macro-to-macro, macro-to-boundary spacing constraints.
  • Allows users to specify their own technology parameters, e.g. and routing resources (in routes per micron) and macro routing allocation.
  • Coming soon: Tools for generating a clustered netlist given a netlist in common formats (Bookshelf and LEF/DEF).
  • Coming soon: Generates macro placement tcl command compatible with major EDA tools (Innovus, ICC2).

Installation

Circuit Training requires:

  • Installing TF-Agents which includes Reverb and TensorFlow.
  • Downloading the placement cost binary into your system path.
  • Downloading the circuit-training code.

Using the code at HEAD with the nightly release of TF-Agents is recommended.

# Installs TF-Agents with nightly versions of Reverb and TensorFlow 2.x
$  pip install tf-agents-nightly[reverb]
# Copies the placement cost binary to /usr/local/bin and makes it executable.
$  sudo curl https://storage.googleapis.com/rl-infra-public/circuit-training/placement_cost/plc_wrapper_main \
     -o  /usr/local/bin/plc_wrapper_main
$  sudo chmod 555 /usr/local/bin/plc_wrapper_main
# Clones the circuit-training repo.
$  git clone https://github.com/google-research/circuit-training.git

Quick start

This quick start places the Ariane RISC-V CPU macros by training the deep reinforcement policy from scratch. The num_episodes_per_iteration and global_batch_size used below were picked to work on a single machine training on CPU. The purpose is to illustrate a running system, not optimize the result. The result of a few thousand steps is shown in this tensorboard. The full scale Ariane RISC-V experiment matching the paper is detailed in Circuit training for Ariane RISC-V.

The following jobs will be created by the steps below:

  • 1 Replay Buffer (Reverb) job
  • 1-3 Collect jobs
  • 1 Train job
  • 1 Eval job

Each job is started in a tmux session. To switch between sessions use ctrl + b followed by s and then select the specified session.

: Starts 2 more collect jobs to speed up training. # Change to the tmux session `collect_job_01`. # `ctrl + b` followed by `s` $ python3 -m circuit_training.learning.ppo_collect \ --root_dir=${ROOT_DIR} \ --replay_buffer_server_address=${REVERB_SERVER} \ --variable_container_server_address=${REVERB_SERVER} \ --task_id=1 \ --netlist_file=${NETLIST_FILE} \ --init_placement=${INIT_PLACEMENT} # Change to the tmux session `collect_job_02`. # `ctrl + b` followed by `s` $ python3 -m circuit_training.learning.ppo_collect \ --root_dir=${ROOT_DIR} \ --replay_buffer_server_address=${REVERB_SERVER} \ --variable_container_server_address=${REVERB_SERVER} \ --task_id=2 \ --netlist_file=${NETLIST_FILE} \ --init_placement=${INIT_PLACEMENT} ">
# Sets the environment variables needed by each job. These variables are
# inherited by the tmux sessions created in the next step.
$  export ROOT_DIR=./logs/run_00
$  export REVERB_PORT=8008
$  export REVERB_SERVER="127.0.0.1:${REVERB_PORT}"
$  export NETLIST_FILE=./circuit_training/environment/test_data/ariane/netlist.pb.txt
$  export INIT_PLACEMENT=./circuit_training/environment/test_data/ariane/initial.plc

# Creates all the tmux sessions that will be used.
$  tmux new-session -d -s reverb_server && \
   tmux new-session -d -s collect_job_00 && \
   tmux new-session -d -s collect_job_01 && \
   tmux new-session -d -s collect_job_02 && \
   tmux new-session -d -s train_job && \
   tmux new-session -d -s eval_job && \
   tmux new-session -d -s tb_job

# Starts the Replay Buffer (Reverb) Job
$  tmux attach -t reverb_server
$  python3 -m circuit_training.learning.ppo_reverb_server \
   --root_dir=${ROOT_DIR}  --port=${REVERB_PORT}

# Starts the Training job
# Change to the tmux session `train_job`.
# `ctrl + b` followed by `s`
$  python3 -m circuit_training.learning.train_ppo \
  --root_dir=${ROOT_DIR} \
  --replay_buffer_server_address=${REVERB_SERVER} \
  --variable_container_server_address=${REVERB_SERVER} \
  --num_episodes_per_iteration=16 \
  --global_batch_size=64 \
  --netlist_file=${NETLIST_FILE} \
  --init_placement=${INIT_PLACEMENT}

# Starts the Collect job
# Change to the tmux session `collect_job_00`.
# `ctrl + b` followed by `s`
$  python3 -m circuit_training.learning.ppo_collect \
  --root_dir=${ROOT_DIR} \
  --replay_buffer_server_address=${REVERB_SERVER} \
  --variable_container_server_address=${REVERB_SERVER} \
  --task_id=0 \
  --netlist_file=${NETLIST_FILE} \
  --init_placement=${INIT_PLACEMENT}

# Starts the Eval job
# Change to the tmux session `eval_job`.
# `ctrl + b` followed by `s`
$  python3 -m circuit_training.learning.eval \
  --root_dir=${ROOT_DIR} \
  --variable_container_server_address=${REVERB_SERVER} \
  --netlist_file=${NETLIST_FILE} \
  --init_placement=${INIT_PLACEMENT}

# Start Tensorboard.
# Change to the tmux session `tb_job`.
# `ctrl + b` followed by `s`
$  tensorboard dev upload --logdir ./logs

# 
   
    : Starts 2 more collect jobs to speed up training.
   
# Change to the tmux session `collect_job_01`.
# `ctrl + b` followed by `s`
$  python3 -m circuit_training.learning.ppo_collect \
  --root_dir=${ROOT_DIR} \
  --replay_buffer_server_address=${REVERB_SERVER} \
  --variable_container_server_address=${REVERB_SERVER} \
  --task_id=1 \
  --netlist_file=${NETLIST_FILE} \
  --init_placement=${INIT_PLACEMENT}

# Change to the tmux session `collect_job_02`.
# `ctrl + b` followed by `s`
$  python3 -m circuit_training.learning.ppo_collect \
  --root_dir=${ROOT_DIR} \
  --replay_buffer_server_address=${REVERB_SERVER} \
  --variable_container_server_address=${REVERB_SERVER} \
  --task_id=2 \
  --netlist_file=${NETLIST_FILE} \
  --init_placement=${INIT_PLACEMENT}

Results

The results below are reported for training from scratch, since the pre-trained model cannot be shared at this time.

Ariane RISC-V CPU

View the full details of the Ariane experiment on our details page. With this code we are able to get comparable or better results training from scratch as fine-tuning a pre-trained model. At the time the paper was published, training from a pre-trained model resulted in better results than training from scratch for the Ariane RISC-V. Improvements to the code have also resulted in 50% less GPU resources needed and a 2x walltime speedup even in training from scratch. Below are the mean and standard deviation for 3 different seeds run 3 times each. This is slightly different than what was used in the paper (8 runs each with a different seed), but better captures the different sources of variability.

Proxy Wirelength Proxy Congestion Proxy Density
mean 0.1013 0.9174 0.5502
std 0.0036 0.0647 0.0568

The table below summarizes the paper result for fine-tuning from a pre-trained model over 8 runs with each one using a different seed.

Proxy Wirelength Proxy Congestion Proxy Density
mean 0.1198 0.9718 0.5729
std 0.0019 0.0346 0.0086

Testing

# Runs tests with nightly TF-Agents.
$  tox -e py37,py38,py39
# Runs with latest stable TF-Agents.
$  tox -e py37-nightly,py38-nightly,py39-nightly

# Using our Docker for CI.
## Build the docker
$  docker build --tag circuit_training:ci -f tools/docker/ubuntu_ci tools/docker/
## Runs tests with nightly TF-Agents.
$  docker run -it --rm -v $(pwd):/workspace --workdir /workspace circuit_training:ci \
     tox -e py37-nightly,py38-nightly,py39-nightly
## Runs tests with latest stable TF-Agents.
$  docker run -it --rm -v $(pwd):/workspace --workdir /workspace circuit_training:ci \
     tox -e py37,py38,py39

Releases

While we recommend running at HEAD, we have tagged the code base to mark compatibility with stable releases of the underlying libraries.

Release Branch / Tag TF-Agents
HEAD main tf-agents-nightly
0.0.1 v0.0.1 tf-agents==0.11.0

Follow this pattern to utilize the tagged releases:

$  git clone https://github.com/google-research/circuit-training.git
$  cd circuit-training
# Checks out the tagged version listed in the table in the releases section.
$  git checkout v0.0.1
# Installs the corresponding version of TF-Agents along with Reverb and
# Tensorflow from the table.
$  pip install tf-agents[reverb]==x.x.x
# Copies the placement cost binary to /usr/local/bin and makes it executable.
$  sudo curl https://storage.googleapis.com/rl-infra-public/circuit-training/placement_cost/plc_wrapper_main \
     -o  /usr/local/bin/plc_wrapper_main
$  sudo chmod 555 /usr/local/bin/plc_wrapper_main

How to contribute

We're eager to collaborate with you! See CONTRIBUTING for a guide on how to contribute. This project adheres to TensorFlow's code of conduct. By participating, you are expected to uphold this code of conduct.

Principles

This project adheres to Google's AI principles. By participating, using or contributing to this project you are expected to adhere to these principles.

Main Contributors

We would like to recognize the following individuals for their code contributions, discussions, and other work to make the release of the Circuit Training library possible.

  • Sergio Guadarrama
  • Summer Yue
  • Ebrahim Songhori
  • Joe Jiang
  • Toby Boyd
  • Azalia Mirhoseini
  • Anna Goldie
  • Mustafa Yazgan
  • Shen Wang
  • Terence Tam
  • Young-Joon Lee
  • Roger Carpenter
  • Quoc Le
  • Ed Chi

How to cite

If you use this code, please cite both:

@article{mirhoseini2021graph,
  title={A graph placement methodology for fast chip design},
  author={Mirhoseini, Azalia and Goldie, Anna and Yazgan, Mustafa and Jiang, Joe
  Wenjie and Songhori, Ebrahim and Wang, Shen and Lee, Young-Joon and Johnson,
  Eric and Pathak, Omkar and Nazi, Azade and Pak, Jiwoo and Tong, Andy and
  Srinivasa, Kavya and Hang, William and Tuncer, Emre and V. Le, Quoc and
  Laudon, James and Ho, Richard and Carpenter, Roger and Dean, Jeff},
  journal={Nature},
  volume={594},
  number={7862},
  pages={207--212},
  year={2021},
  publisher={Nature Publishing Group}
}
@misc{CircuitTraining2021,
  title = {{Circuit Training}: An open-source framework for generating chip
  floor plans with distributed deep reinforcement learning.},
  author = {Guadarrama, Sergio and Yue, Summer and Boyd, Toby and Jiang, Joe
  Wenjie and Songhori, Ebrahim and Tam, Terence and Mirhoseini, Azalia},
  howpublished = {\url{https://github.com/google_research/circuit_training}},
  url = "https://github.com/google_research/circuit_training",
  year = 2021,
  note = "[Online; accessed 21-December-2021]"
}

Disclaimer

This is not an official Google product.

Owner
Google Research
Google Research
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
U-Net for GBM

My Final Year Project(FYP) In National University of Singapore(NUS) You need Pytorch(stable 1.9.1) Both cuda version and cpu version are OK File Str

PinkR1ver 1 Oct 27, 2021
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022
Unimodal Face Classification with Multimodal Training

Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi

Wenbin Teng 3 Jul 06, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique

Rishit Dagli 101 Nov 01, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021